首页 > 最新文献

Few-Body Systems最新文献

英文 中文
Characterizing Motion States in the Restricted Five-Body Problem with Perturbing Forces
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-14 DOI: 10.1007/s00601-025-01988-8
Sanjeev Kumar, A. K. Awasthi

The n-body problem, a cornerstone of celestial mechanics, has been the subject of extensive research for centuries, with particular emphasis on the complexities of the three-body problem under various perturbations. These perturbations include oblateness, triaxiality, radiation pressure, and the effects of Coriolis and centrifugal forces. Recent advancements have shifted focus to systems involving more than three bodies, with notable work in the four-body problem. In this study, we extend the analysis to the five-body problem, examining its chaotic behavior and identifying regions of libration points. By varying the masses of the bodies across distinct surface points, we analyze the system’s dynamics, uncovering fractal zones within the problem. Additionally, we perform a stability analysis of the libration points, offering new insights into the behavior and stability of the five-body system. This research contributes to a deeper understanding of multi-body interactions and their implications in both theoretical and applied contexts.

{"title":"Characterizing Motion States in the Restricted Five-Body Problem with Perturbing Forces","authors":"Sanjeev Kumar,&nbsp;A. K. Awasthi","doi":"10.1007/s00601-025-01988-8","DOIUrl":"10.1007/s00601-025-01988-8","url":null,"abstract":"<div><p>The <i>n</i>-body problem, a cornerstone of celestial mechanics, has been the subject of extensive research for centuries, with particular emphasis on the complexities of the three-body problem under various perturbations. These perturbations include oblateness, triaxiality, radiation pressure, and the effects of Coriolis and centrifugal forces. Recent advancements have shifted focus to systems involving more than three bodies, with notable work in the four-body problem. In this study, we extend the analysis to the five-body problem, examining its chaotic behavior and identifying regions of libration points. By varying the masses of the bodies across distinct surface points, we analyze the system’s dynamics, uncovering fractal zones within the problem. Additionally, we perform a stability analysis of the libration points, offering new insights into the behavior and stability of the five-body system. This research contributes to a deeper understanding of multi-body interactions and their implications in both theoretical and applied contexts.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-06 DOI: 10.1007/s00601-025-01981-1
Salah Doma, Gamal Roston, Mostafa Ahmed

The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1(s^{{2}})ns, 1(s^{{2}}n)p, and 1(s^{{2}}n)d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.

{"title":"Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom","authors":"Salah Doma,&nbsp;Gamal Roston,&nbsp;Mostafa Ahmed","doi":"10.1007/s00601-025-01981-1","DOIUrl":"10.1007/s00601-025-01981-1","url":null,"abstract":"<div><p>The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1<span>(s^{{2}})</span><i>ns</i>, 1<span>(s^{{2}}n)</span>p, and 1<span>(s^{{2}}n)</span>d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-025-01981-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO(^mathbf{+}), BO and CN Diatomic Molecules
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-05 DOI: 10.1007/s00601-025-01984-y
Abdeslam Haddouche, Rabia Yekken

The three-dimensional Schrödinger equation, where a non-linearity is caused by the introduction of an energy-dependent potential, is solved in the case of Energy-Dependent Manning-Rosen Potential (EDMRP) by means of extended quantum supersymmetry (EQS) combined with shape invariance, and Nikiforov–Uvarov (N–U) methods, using in both cases the Pekeris approximation for the centrifugal term. On the one hand, after determining the potential parameters according to experimental data, EQS and N–U results are compared to the numerical ones to show the effectiveness of our calculations. On the other hand, the effects of the non-linearity introduced via energy-dependent potentials in the Schrödinger equation are shown through a comparison made between energy-dependent and position-only-dependent cases of the Manning-Rosen potential. We considered some diatomic molecules CO(^{+}), BO, and CN with the experimental values of their potential parameters. Our results allowed us to consider, as a particular case, the three-dimensional energy-dependent Hulthén potential.

{"title":"The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO(^mathbf{+}), BO and CN Diatomic Molecules","authors":"Abdeslam Haddouche,&nbsp;Rabia Yekken","doi":"10.1007/s00601-025-01984-y","DOIUrl":"10.1007/s00601-025-01984-y","url":null,"abstract":"<div><p>The three-dimensional Schrödinger equation, where a non-linearity is caused by the introduction of an energy-dependent potential, is solved in the case of Energy-Dependent Manning-Rosen Potential (EDMRP) by means of extended quantum supersymmetry (EQS) combined with shape invariance, and Nikiforov–Uvarov (N–U) methods, using in both cases the Pekeris approximation for the centrifugal term. On the one hand, after determining the potential parameters according to experimental data, EQS and N–U results are compared to the numerical ones to show the effectiveness of our calculations. On the other hand, the effects of the non-linearity introduced via energy-dependent potentials in the Schrödinger equation are shown through a comparison made between energy-dependent and position-only-dependent cases of the Manning-Rosen potential. We considered some diatomic molecules CO<span>(^{+})</span>, BO, and CN with the experimental values of their potential parameters. Our results allowed us to consider, as a particular case, the three-dimensional energy-dependent Hulthén potential.\u0000</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masses and Magnetic Moments of Singly Heavy Pentaquarks using the Gursey-Radicati Mass Formula, Effective Mass, and Screened Charge Scheme
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-04 DOI: 10.1007/s00601-025-01986-w
Ankush Sharma, Alka Upadhyay

Motivated by the recent discovery of single heavy tetraquark structures, (T_{cbar{s}0}^a (2900)^{++}) and (T_{cbar{s}0}^a(2900)^0) by the LHCb collaboration, masses and magnetic moments of singly heavy pentaquark states are estimated in this work. To classify the singly heavy pentaquark structures, we employ the special unitary representation. By using the SU(3) flavor representation, singly heavy pentaquark states are classified into the allowed flavor multiplets. Also, by using the extension of the Gursey-Radicati mass formula and the effective mass scheme, masses of singly heavy pentaquark states are estimated. Further, magnetic moments of singly heavy pentaquarks have been calculated using the effective mass and the screened charge schemes. A thorough comparison of our results shows reasonable agreement with the available theoretical data and may be helpful for future experimental studies.

{"title":"Masses and Magnetic Moments of Singly Heavy Pentaquarks using the Gursey-Radicati Mass Formula, Effective Mass, and Screened Charge Scheme","authors":"Ankush Sharma,&nbsp;Alka Upadhyay","doi":"10.1007/s00601-025-01986-w","DOIUrl":"10.1007/s00601-025-01986-w","url":null,"abstract":"<div><p>Motivated by the recent discovery of single heavy tetraquark structures, <span>(T_{cbar{s}0}^a (2900)^{++})</span> and <span>(T_{cbar{s}0}^a(2900)^0)</span> by the LHCb collaboration, masses and magnetic moments of singly heavy pentaquark states are estimated in this work. To classify the singly heavy pentaquark structures, we employ the special unitary representation. By using the SU(3) flavor representation, singly heavy pentaquark states are classified into the allowed flavor multiplets. Also, by using the extension of the Gursey-Radicati mass formula and the effective mass scheme, masses of singly heavy pentaquark states are estimated. Further, magnetic moments of singly heavy pentaquarks have been calculated using the effective mass and the screened charge schemes. A thorough comparison of our results shows reasonable agreement with the available theoretical data and may be helpful for future experimental studies.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarizability of the Kaonic Helium Atom
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-31 DOI: 10.1007/s00601-025-01987-9
D. T. Aznabayev, A. K. Bekbaev, Vladimir I. Korobov

The static dipole polarizability of metastable states in the kaonic helium atoms is studied. We use the complex coordinate rotation method to properly account for the resonant nature of the states. Our calculations show that some of the states are not stable with respect to collisional quenching in a dense helium target and should not be detected in the experiment.

{"title":"Polarizability of the Kaonic Helium Atom","authors":"D. T. Aznabayev,&nbsp;A. K. Bekbaev,&nbsp;Vladimir I. Korobov","doi":"10.1007/s00601-025-01987-9","DOIUrl":"10.1007/s00601-025-01987-9","url":null,"abstract":"<div><p>The static dipole polarizability of metastable states in the kaonic helium atoms is studied. We use the complex coordinate rotation method to properly account for the resonant nature of the states. Our calculations show that some of the states are not stable with respect to collisional quenching in a dense helium target and should not be detected in the experiment.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-29 DOI: 10.1007/s00601-025-01985-x
Somia Miraoui, Abdelhakim Benkrane, Ahmed Hocine

In this paper, we study quantum droplets in one dimension under the influence of spacetime curvature by redefining the momentum operator, resulting in a maximum length and a minimum momentum, consistent with anti-de Sitter space (AdS). By examining this effect through the (alpha ) parameter on the exact solution of free quantum droplets, we found that the relationship between the number of atoms and the chemical potential differs from the ordinary case. Additionally, we discovered that the flat-top shape can disappear and transform into a Gaussian shape in the presence of the maximum length (minimum momentum). Moreover, we found that the interaction of quantum droplets with spacetime curvature causes them to have a larger size. We also studied this effect on the variational solution via Gaussian ansatz for small droplets, we concluded that (alpha ) decreases the stability and self-localisation of the quantum droplets.

{"title":"Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach","authors":"Somia Miraoui,&nbsp;Abdelhakim Benkrane,&nbsp;Ahmed Hocine","doi":"10.1007/s00601-025-01985-x","DOIUrl":"10.1007/s00601-025-01985-x","url":null,"abstract":"<div><p>In this paper, we study quantum droplets in one dimension under the influence of spacetime curvature by redefining the momentum operator, resulting in a maximum length and a minimum momentum, consistent with anti-de Sitter space (AdS). By examining this effect through the <span>(alpha )</span> parameter on the exact solution of free quantum droplets, we found that the relationship between the number of atoms and the chemical potential differs from the ordinary case. Additionally, we discovered that the flat-top shape can disappear and transform into a Gaussian shape in the presence of the maximum length (minimum momentum). Moreover, we found that the interaction of quantum droplets with spacetime curvature causes them to have a larger size. We also studied this effect on the variational solution via Gaussian ansatz for small droplets, we concluded that <span>(alpha )</span> decreases the stability and self-localisation of the quantum droplets.\u0000</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Tunnelling of a Composite Particle in Presence of a Magnetic Field
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-27 DOI: 10.1007/s00601-025-01982-0
Bernard Faulend, Jan Dragašević
{"title":"Correction: Tunnelling of a Composite Particle in Presence of a Magnetic Field","authors":"Bernard Faulend,&nbsp;Jan Dragašević","doi":"10.1007/s00601-025-01982-0","DOIUrl":"10.1007/s00601-025-01982-0","url":null,"abstract":"","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarizabilities of Negatively Charged Helium-Like Ions with Exponential-Cosine-Screened Coulomb Potentials
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-27 DOI: 10.1007/s00601-025-01980-2
Yu-Qi Yang, Zishi Jiang, Bing-Kuan Lyu, Sabyasachi Kar

We investigate the multipole polarizabilities of negatively charged helium-like ions interacting with exponential-cosine-screened Coulomb potentials using correlated exponential wave functions. The dynamic dipole and quadrupole polarizabilities of negatively charged helium-like ions (^{mathrm {infty }})H(^{mathrm {-}}), (^{textrm{1}})H(^{mathrm {-}}), D(^{mathrm {-}}), T(^{mathrm {-}}), Mu(^{mathrm {-}}), Pi(^{mathrm {- }})are presented as functions of screening parameter. The static dipole and quadrupole polarizabilities, and the ground state energies are presented in terms of nuclear mass and screening parameter.

{"title":"Polarizabilities of Negatively Charged Helium-Like Ions with Exponential-Cosine-Screened Coulomb Potentials","authors":"Yu-Qi Yang,&nbsp;Zishi Jiang,&nbsp;Bing-Kuan Lyu,&nbsp;Sabyasachi Kar","doi":"10.1007/s00601-025-01980-2","DOIUrl":"10.1007/s00601-025-01980-2","url":null,"abstract":"<div><p>We investigate the multipole polarizabilities of negatively charged helium-like ions interacting with exponential-cosine-screened Coulomb potentials using correlated exponential wave functions. The dynamic dipole and quadrupole polarizabilities of negatively charged helium-like ions <span>(^{mathrm {infty }})</span>H<span>(^{mathrm {-}})</span>, <span>(^{textrm{1}})</span>H<span>(^{mathrm {-}})</span>, D<span>(^{mathrm {-}})</span>, T<span>(^{mathrm {-}})</span>, Mu<span>(^{mathrm {-}})</span>, Pi<span>(^{mathrm {- }})</span>are presented as functions of screening parameter. The static dipole and quadrupole polarizabilities, and the ground state energies are presented in terms of nuclear mass and screening parameter.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed Faddeev Calculations of the Three-Nucleon Continuum with Chiral Forces
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1007/s00601-025-01983-z
Henryk Witała

We discuss the problem of determining the strengths of short-range components in a chiral three-nucleon force (3NF) by comparing theoretical predictions with nucleon-deuteron (Nd) scattering data. A perturbative treatment of contact terms when solving the three-nucleon (3N) continuum Faddeev equation seems to be particularly well suited to dealing with variable strengths of such components in the chiral 3NF. A significant reduction of the computation time achieved in this way makes such an approach a valuable tool for fine-tuning of the 3N Hamiltonian parameters.

{"title":"High-Speed Faddeev Calculations of the Three-Nucleon Continuum with Chiral Forces","authors":"Henryk Witała","doi":"10.1007/s00601-025-01983-z","DOIUrl":"10.1007/s00601-025-01983-z","url":null,"abstract":"<div><p>We discuss the problem of determining the strengths of short-range components in a chiral three-nucleon force (3NF) by comparing theoretical predictions with nucleon-deuteron (Nd) scattering data. A perturbative treatment of contact terms when solving the three-nucleon (3N) continuum Faddeev equation seems to be particularly well suited to dealing with variable strengths of such components in the chiral 3NF. A significant reduction of the computation time achieved in this way makes such an approach a valuable tool for fine-tuning of the 3N Hamiltonian parameters.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bound and Resonance States of Highly Charged H- and He-like Ions Under Dense Quantum Plasma Environment 高密度量子等离子体环境下高荷电氢离子和类氢离子的束缚态和共振态
IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1007/s00601-024-01979-1
A. N. Sil, G. Barik, S. Dutta, S. Mondal, J. K. Saha, T. K. Mukhopadhyay

The impact of the dense quantum plasma on the bound (1sns; (^1)S(^e)) [(n=1-5)] and a few low-lying doubly excited resonance (2sns, 2pnp; (^1)S(^e)) [(n=2-3)] states of various two-electron highly charged He-like C(^{4+}), Mg(^{10+}), Al(^{11+}), Si(^{12+}), S(^{14+}) and Ar(^{16+}) ions has been studied using an explicitly correlated multi-exponent Hylleraas type basis set under the framework of Ritz variational method. Utilizing the state-of-art stabilization technique, the bound states properties and the resonance parameters (energy and width) are determined under different plasma conditions. Ionization potential depression with respect to the plasma screening length is rigorously investigated for both the bound and resonance states. The width (or the lifetime) of the resonance states originating from different electronic configurations follows unique patterns with respect to the plasma screening length. Most of the data for the resonance parameters are being reported here for the first time in the literature.

致密量子等离子体对束缚态(1sns)的影响 (^1)s(^e)) [(n=1-5)]和少数低洼双激发共振(2sns, 2pnp; (^1)s(^e)) [(n=2-3)各种双电子高荷电He-like C的状态(^{4+})我是(^{10+})艾尔(^{11+}), Si(^{12+}),(^{14+}) 和Ar(^{16+}) 在Ritz变分方法的框架下,利用显相关的多指数hyleraas型基集对离子进行了研究。利用最先进的稳定技术,确定了不同等离子体条件下的束缚态性质和共振参数(能量和宽度)。电离电位的下降与等离子体筛选长度严格研究了束缚态和共振态。源自不同电子构型的共振态的宽度(或寿命)与等离子体筛选长度有关,遵循独特的模式。大多数共振参数的数据在文献中都是首次报道。
{"title":"Bound and Resonance States of Highly Charged H- and He-like Ions Under Dense Quantum Plasma Environment","authors":"A. N. Sil,&nbsp;G. Barik,&nbsp;S. Dutta,&nbsp;S. Mondal,&nbsp;J. K. Saha,&nbsp;T. K. Mukhopadhyay","doi":"10.1007/s00601-024-01979-1","DOIUrl":"10.1007/s00601-024-01979-1","url":null,"abstract":"<div><p>The impact of the dense quantum plasma on the bound (1<i>sns</i>; <span>(^1)</span>S<span>(^e)</span>) [<span>(n=1-5)</span>] and a few low-lying doubly excited resonance (2<i>sns</i>, 2<i>pnp</i>; <span>(^1)</span>S<span>(^e)</span>) [<span>(n=2-3)</span>] states of various two-electron highly charged He-like C<span>(^{4+})</span>, Mg<span>(^{10+})</span>, Al<span>(^{11+})</span>, Si<span>(^{12+})</span>, S<span>(^{14+})</span> and Ar<span>(^{16+})</span> ions has been studied using an explicitly correlated multi-exponent Hylleraas type basis set under the framework of Ritz variational method. Utilizing the state-of-art stabilization technique, the bound states properties and the resonance parameters (energy and width) are determined under different plasma conditions. Ionization potential depression with respect to the plasma screening length is rigorously investigated for both the bound and resonance states. The width (or the lifetime) of the resonance states originating from different electronic configurations follows unique patterns with respect to the plasma screening length. Most of the data for the resonance parameters are being reported here for the first time in the literature.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Few-Body Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1