{"title":"Highly stretchable conductive carbon nanofibre acrylic latex-based nanocomposites for sensing applications","authors":"Srinivasarao Yaragalla, K B Bhavitha","doi":"10.1007/s12034-025-03397-3","DOIUrl":null,"url":null,"abstract":"<div><p>Stretchable conducting polymer nanocomposites are indispensable for designing flexible electronic devices mainly employed in emerging robotic technology to improve human–machine interactions. Herein, we report the fabrication and testing of 300% stretchable electronic film resistors as strain sensors by spray coating carbon nanofibers (CNFs)/natural rubber solutions over a stretchable acrylic latex-CNF nanocomposite substrate. The CNF-based coatings had a low sheet resistance of 26 Ω sq<sup>−1</sup> and very good current transmission behaviour under elongation. Under 300% elongation, the nanocomposite film current reached ~55 µA demonstrating their potential as flexible thin conductive films.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-025-03397-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable conducting polymer nanocomposites are indispensable for designing flexible electronic devices mainly employed in emerging robotic technology to improve human–machine interactions. Herein, we report the fabrication and testing of 300% stretchable electronic film resistors as strain sensors by spray coating carbon nanofibers (CNFs)/natural rubber solutions over a stretchable acrylic latex-CNF nanocomposite substrate. The CNF-based coatings had a low sheet resistance of 26 Ω sq−1 and very good current transmission behaviour under elongation. Under 300% elongation, the nanocomposite film current reached ~55 µA demonstrating their potential as flexible thin conductive films.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.