{"title":"Unravelling the electrochemical impedance spectroscopy of hydrogenated amorphous silicon cells for photovoltaics","authors":"Soni Prayogi, Deril Ristiani, D. Darminto","doi":"10.1007/s40243-024-00295-2","DOIUrl":null,"url":null,"abstract":"<div><p>This research reveals the application of electrochemical impedance spectroscopy (EIS) in analyzing and improving the performance of hydrogenated amorphous silicon (a-Si: H) based photovoltaic cells. As a non-destructive technique, EIS provides deep insight into the electrochemical characteristics of photovoltaic cells, including series resistance, layer capacitance, recombination mechanisms, and charge transport. The impedance data is obtained and analyzed using small AC potential signals at various frequencies via Nyquist diagrams and Bode plots. This analysis allows the identification of resistive and capacitive elements as well as the evaluation of the quality of the interface between the active layer and the electrode. The results show that EIS can identify internal barriers that reduce the efficiency of a-Si: H solar cells, such as dominant recombination mechanisms and inefficient charge transport. Using equivalent circuit models, electrochemical parameters are extracted to reveal cell behavior and performance. In addition, these results also confirm that EIS is an important tool in design optimization and performance improvement of a-Si: H photovoltaic cells, providing a solid scientific basis for the development of more efficient and sustainable solar cell technology. These findings contribute to efforts to increase solar energy efficiency, supporting broader and more effective use of photovoltaic technology in meeting global sustainable energy needs.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00295-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00295-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research reveals the application of electrochemical impedance spectroscopy (EIS) in analyzing and improving the performance of hydrogenated amorphous silicon (a-Si: H) based photovoltaic cells. As a non-destructive technique, EIS provides deep insight into the electrochemical characteristics of photovoltaic cells, including series resistance, layer capacitance, recombination mechanisms, and charge transport. The impedance data is obtained and analyzed using small AC potential signals at various frequencies via Nyquist diagrams and Bode plots. This analysis allows the identification of resistive and capacitive elements as well as the evaluation of the quality of the interface between the active layer and the electrode. The results show that EIS can identify internal barriers that reduce the efficiency of a-Si: H solar cells, such as dominant recombination mechanisms and inefficient charge transport. Using equivalent circuit models, electrochemical parameters are extracted to reveal cell behavior and performance. In addition, these results also confirm that EIS is an important tool in design optimization and performance improvement of a-Si: H photovoltaic cells, providing a solid scientific basis for the development of more efficient and sustainable solar cell technology. These findings contribute to efforts to increase solar energy efficiency, supporting broader and more effective use of photovoltaic technology in meeting global sustainable energy needs.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies