Characterization of thermo-responsive shape memory bio-based thermoplastic polyurethane (SMTPU) for 3D/4D printing applications

IF 2.3 4区 管理学 Q1 MATERIALS SCIENCE, TEXTILES Fashion and Textiles Pub Date : 2025-02-03 DOI:10.1186/s40691-025-00412-3
Yang Sook Jung, Jaehyeung Park, Sunhee Lee, Eun Joo Shin
{"title":"Characterization of thermo-responsive shape memory bio-based thermoplastic polyurethane (SMTPU) for 3D/4D printing applications","authors":"Yang Sook Jung,&nbsp;Jaehyeung Park,&nbsp;Sunhee Lee,&nbsp;Eun Joo Shin","doi":"10.1186/s40691-025-00412-3","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, significant advancements have been made in smart and multifunctional materials through the integration of 4D printing and shape memory polymers (SMPs). This article highlights key SMP fabrication technologies for 4D printing, focusing on the functionality of stimuli-responsive polymers. Bio-based thermoplastic polyurethanes are produced through the prepolymer polymerization method, with 100% bio-based polyester polyols, polypropylene succinate, and 1,3-propanediol by corn sugar. The resulting SMTPU, which contains bio-polyol in the soft segment, along with a chain extender and isocyanate (4,4-methylene diphenyl diisocyanate, MDI), demonstrates excellent shape recoverability even after significant deformation. Atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were employed to analyze hydrogen bonding, microphase separation, and crystallinity, providing insights into the interactions between hard segments (HSs) and soft segments (SSs), an extent of phase separation, and a proportion of hydrogen-bonded urethane groups. The tensile strength of 15–21 MPa, elongation between 534 and 585%, and a hardness of 82–85 Shore A were shown. This study further explores the sustainability and unique properties of SMTPU, making it well-suited for shape memory applications at different temperatures with varying hard segment content. The findings are expected to contribute to future innovations and advancements in the field of 4D printing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-025-00412-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-025-00412-3","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, significant advancements have been made in smart and multifunctional materials through the integration of 4D printing and shape memory polymers (SMPs). This article highlights key SMP fabrication technologies for 4D printing, focusing on the functionality of stimuli-responsive polymers. Bio-based thermoplastic polyurethanes are produced through the prepolymer polymerization method, with 100% bio-based polyester polyols, polypropylene succinate, and 1,3-propanediol by corn sugar. The resulting SMTPU, which contains bio-polyol in the soft segment, along with a chain extender and isocyanate (4,4-methylene diphenyl diisocyanate, MDI), demonstrates excellent shape recoverability even after significant deformation. Atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were employed to analyze hydrogen bonding, microphase separation, and crystallinity, providing insights into the interactions between hard segments (HSs) and soft segments (SSs), an extent of phase separation, and a proportion of hydrogen-bonded urethane groups. The tensile strength of 15–21 MPa, elongation between 534 and 585%, and a hardness of 82–85 Shore A were shown. This study further explores the sustainability and unique properties of SMTPU, making it well-suited for shape memory applications at different temperatures with varying hard segment content. The findings are expected to contribute to future innovations and advancements in the field of 4D printing.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fashion and Textiles
Fashion and Textiles Business, Management and Accounting-Marketing
CiteScore
4.40
自引率
4.20%
发文量
37
审稿时长
13 weeks
期刊介绍: Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor. The scope of the journal includes the following four technical research divisions: Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.
期刊最新文献
Manufacturing and characterization of conductive threads based on twisting process for applying smartwear Characterization of thermo-responsive shape memory bio-based thermoplastic polyurethane (SMTPU) for 3D/4D printing applications Thermal insulation of military boots using a thermal foot manikin in cold environments Comparative study on the drying mechanisms and characteristic changes of fabrics according to heat transfer principles Optimization of automatic classification for women’s pants based on the swin transformer model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1