EunRyoung Kim, Yeri Kang, Ha Hwang, Jae-Jin Kim, Chang-Keun Song
{"title":"Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model","authors":"EunRyoung Kim, Yeri Kang, Ha Hwang, Jae-Jin Kim, Chang-Keun Song","doi":"10.1007/s13143-025-00390-y","DOIUrl":null,"url":null,"abstract":"<div><p>Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO<sub>2</sub> emissions. This study examines fuel consumption data reconstructed from field experiments to validate the CFD model’s ability to accurately simulate drag forces within a homogeneous three-truck platoon. The potential for fuel savings was assessed based on CFD-simulated fuel consumption, taking into account various inter-vehicle distances and driving speeds. The model successfully reproduced the fuel consumption observed in a platooning formation comprising lead, middle, and trailing trucks, with an error margin below 6.2%. Fuel consumption analysis shows that while lead and middle trucks consume more fuel with increased inter-vehicle distances, the trailing truck's consumption decreases at specific distance-to-length ratios (D/L), increasing again beyond a D/L of 1.1. Additionally, a significant decrease in total fuel efficiency was noted for D/L ratios exceeding 1.5. Considering the diverse platooning scenarios analyzed, the study anticipates an annual reduction of up to 7 tons of CO<sub>2</sub> equivalent per vehicle. By optimizing platooning configurations, this research contributes to enhancing fuel efficiency and reducing emissions from HDVs.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-025-00390-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-025-00390-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO2 emissions. This study examines fuel consumption data reconstructed from field experiments to validate the CFD model’s ability to accurately simulate drag forces within a homogeneous three-truck platoon. The potential for fuel savings was assessed based on CFD-simulated fuel consumption, taking into account various inter-vehicle distances and driving speeds. The model successfully reproduced the fuel consumption observed in a platooning formation comprising lead, middle, and trailing trucks, with an error margin below 6.2%. Fuel consumption analysis shows that while lead and middle trucks consume more fuel with increased inter-vehicle distances, the trailing truck's consumption decreases at specific distance-to-length ratios (D/L), increasing again beyond a D/L of 1.1. Additionally, a significant decrease in total fuel efficiency was noted for D/L ratios exceeding 1.5. Considering the diverse platooning scenarios analyzed, the study anticipates an annual reduction of up to 7 tons of CO2 equivalent per vehicle. By optimizing platooning configurations, this research contributes to enhancing fuel efficiency and reducing emissions from HDVs.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.