Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2025-02-04 DOI:10.1007/s13143-025-00390-y
EunRyoung Kim, Yeri Kang, Ha Hwang, Jae-Jin Kim, Chang-Keun Song
{"title":"Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model","authors":"EunRyoung Kim,&nbsp;Yeri Kang,&nbsp;Ha Hwang,&nbsp;Jae-Jin Kim,&nbsp;Chang-Keun Song","doi":"10.1007/s13143-025-00390-y","DOIUrl":null,"url":null,"abstract":"<div><p>Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO<sub>2</sub> emissions. This study examines fuel consumption data reconstructed from field experiments to validate the CFD model’s ability to accurately simulate drag forces within a homogeneous three-truck platoon. The potential for fuel savings was assessed based on CFD-simulated fuel consumption, taking into account various inter-vehicle distances and driving speeds. The model successfully reproduced the fuel consumption observed in a platooning formation comprising lead, middle, and trailing trucks, with an error margin below 6.2%. Fuel consumption analysis shows that while lead and middle trucks consume more fuel with increased inter-vehicle distances, the trailing truck's consumption decreases at specific distance-to-length ratios (D/L), increasing again beyond a D/L of 1.1. Additionally, a significant decrease in total fuel efficiency was noted for D/L ratios exceeding 1.5. Considering the diverse platooning scenarios analyzed, the study anticipates an annual reduction of up to 7 tons of CO<sub>2</sub> equivalent per vehicle. By optimizing platooning configurations, this research contributes to enhancing fuel efficiency and reducing emissions from HDVs.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-025-00390-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-025-00390-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO2 emissions. This study examines fuel consumption data reconstructed from field experiments to validate the CFD model’s ability to accurately simulate drag forces within a homogeneous three-truck platoon. The potential for fuel savings was assessed based on CFD-simulated fuel consumption, taking into account various inter-vehicle distances and driving speeds. The model successfully reproduced the fuel consumption observed in a platooning formation comprising lead, middle, and trailing trucks, with an error margin below 6.2%. Fuel consumption analysis shows that while lead and middle trucks consume more fuel with increased inter-vehicle distances, the trailing truck's consumption decreases at specific distance-to-length ratios (D/L), increasing again beyond a D/L of 1.1. Additionally, a significant decrease in total fuel efficiency was noted for D/L ratios exceeding 1.5. Considering the diverse platooning scenarios analyzed, the study anticipates an annual reduction of up to 7 tons of CO2 equivalent per vehicle. By optimizing platooning configurations, this research contributes to enhancing fuel efficiency and reducing emissions from HDVs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model Role of the Pacific-Japan Pattern in Shaping Sri Lanka Rainfall Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1