Experimental Compressed Liquid Density Measurements and Correlation of the Binary Mixture {n-Pentane (R601) + Trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E))}
Davide Menegazzo, Giulia Lombardo, Laura Vallese, Sergio Bobbo
{"title":"Experimental Compressed Liquid Density Measurements and Correlation of the Binary Mixture {n-Pentane (R601) + Trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E))}","authors":"Davide Menegazzo, Giulia Lombardo, Laura Vallese, Sergio Bobbo","doi":"10.1007/s10765-025-03509-5","DOIUrl":null,"url":null,"abstract":"<div><p>Regulations like the F-gas Regulation (EU) 2024/573 and the Kigali Amendment to the Montreal Protocol, along with efforts to mitigate climate change, drive research into alternatives to fluorinated greenhouse gases for high-temperature heat pumps and power generation. Ideal refrigerants should have low GWP, high efficiency, non-flammability, non-toxicity, material compatibility and cost effectiveness. HCFOs have emerged as promising candidates, both as pure fluids and in mixtures with HCs. These blends show efficiency and potential non-flammability for high-temperature applications, but experimental data on their thermophysical properties remain scarce. This study presents the first experimental measurements on the {n-pentane (R601) + trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E))} binary system. In particular, the compressed liquid density of three mixture compositions have been measured employing a vibrating tube densimeter within the temperature range from 283.15 K to 423.15 K and at pressures ranging from 1 MPa to 12 MPa. A novel technique was applied to ensure a combined uncertainty (<i>k</i>=2) not greater than 0.0003 mol<span>\\(\\cdot\\)</span>mol<span>\\(^{-1}\\)</span> in the mixture composition, leading to final combined uncertainty (<i>k</i>=2) on the liquid density of no more than 0.2%. Finally, a new mixture model based on the Helmholtz-energy-explicit Equation of State has been developed from such experimental data. This model accurately represents the behaviour of the binary mixture, enhancing the available understanding of its thermodynamic properties.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-025-03509-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03509-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Regulations like the F-gas Regulation (EU) 2024/573 and the Kigali Amendment to the Montreal Protocol, along with efforts to mitigate climate change, drive research into alternatives to fluorinated greenhouse gases for high-temperature heat pumps and power generation. Ideal refrigerants should have low GWP, high efficiency, non-flammability, non-toxicity, material compatibility and cost effectiveness. HCFOs have emerged as promising candidates, both as pure fluids and in mixtures with HCs. These blends show efficiency and potential non-flammability for high-temperature applications, but experimental data on their thermophysical properties remain scarce. This study presents the first experimental measurements on the {n-pentane (R601) + trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E))} binary system. In particular, the compressed liquid density of three mixture compositions have been measured employing a vibrating tube densimeter within the temperature range from 283.15 K to 423.15 K and at pressures ranging from 1 MPa to 12 MPa. A novel technique was applied to ensure a combined uncertainty (k=2) not greater than 0.0003 mol\(\cdot\)mol\(^{-1}\) in the mixture composition, leading to final combined uncertainty (k=2) on the liquid density of no more than 0.2%. Finally, a new mixture model based on the Helmholtz-energy-explicit Equation of State has been developed from such experimental data. This model accurately represents the behaviour of the binary mixture, enhancing the available understanding of its thermodynamic properties.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.