{"title":"Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals","authors":"Qishan Sun, Shitong Wei, Shanping Lu","doi":"10.1007/s40195-024-01760-7","DOIUrl":null,"url":null,"abstract":"<div><p>9Cr ferritic/martensitic (9Cr F/M) steels are considered ideal structural materials for various nuclear energy systems. However, δ-ferrite (δ), as a controlled phase, may occur in its welds. Three deposited metals with different carbon contents (0.04, 0.07, and 0.10 wt%) were investigated using experimental and finite element simulation methods. The results showed that the incomplete peritectic reaction, the incomplete δ to austenite phase transition, and the segregation of ferrite-stabilized elements led to the residual δ. The amount and morphology of δ significantly influence the mechanical properties. After increasing the carbon content, the increase in strength comes mainly from precipitation strengthening and dislocation strengthening, the presence of δ will reduce the strength. During the impact process, δ affects the absorbed energy for the stable crack growth through its morphology, and <i>M</i><sub>23</sub>C<sub>6</sub> affects the crack formation energy through its quantity. By decreasing the carbon content to a certain extent, the reduction of <i>M</i><sub>23</sub>C<sub>6</sub> content and the generation of large polygonal δ can effectively improve the toughness of 9Cr-steel deposited metals.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 1","pages":"121 - 138"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01760-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
9Cr ferritic/martensitic (9Cr F/M) steels are considered ideal structural materials for various nuclear energy systems. However, δ-ferrite (δ), as a controlled phase, may occur in its welds. Three deposited metals with different carbon contents (0.04, 0.07, and 0.10 wt%) were investigated using experimental and finite element simulation methods. The results showed that the incomplete peritectic reaction, the incomplete δ to austenite phase transition, and the segregation of ferrite-stabilized elements led to the residual δ. The amount and morphology of δ significantly influence the mechanical properties. After increasing the carbon content, the increase in strength comes mainly from precipitation strengthening and dislocation strengthening, the presence of δ will reduce the strength. During the impact process, δ affects the absorbed energy for the stable crack growth through its morphology, and M23C6 affects the crack formation energy through its quantity. By decreasing the carbon content to a certain extent, the reduction of M23C6 content and the generation of large polygonal δ can effectively improve the toughness of 9Cr-steel deposited metals.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.