Electro-mechanical behaviour of mortars reinforced with alternative electrically conductive inclusions

IF 3.9 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-02-04 DOI:10.1617/s11527-025-02590-4
Niki Trochoutsou, Danny Smyl, Giacomo Torelli
{"title":"Electro-mechanical behaviour of mortars reinforced with alternative electrically conductive inclusions","authors":"Niki Trochoutsou,&nbsp;Danny Smyl,&nbsp;Giacomo Torelli","doi":"10.1617/s11527-025-02590-4","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of electrically conductive inclusions in structural materials can impart self-sensing functionalities, making them ideal for structural health monitoring applications. However, the use of more sustainable alternatives and their effect on key engineering properties remain largely unexplored, while the adoption of different testing protocols for the characterisation of electrical/self-sensing properties can lead to different results, thus questioning their reliability, even for existing smart composites. This paper investigates systematically the effect of recycled carbon fibres and graphite powder on the mechanical, electrical, transport properties and piezoresistive performance of cementitious mortars. Virgin carbon fibres, at dosages equivalent to those of recycled fibres, were also examined to establish a performance benchmark. Fibre content ranged from 0.05% to 1% vol., while graphite powder was added as sand replacement at contents varying from 0.3% to 3% vol. The effect of existing testing protocols and electrode layout on the piezoresistive performance was also examined, and the associated limitations and challenges are discussed in detail. The results demonstrate the potential of recycled carbon fibres as a cost-effective alternative in smart applications, without compromising electrical and piezoresistive performance. The use of 0.25%vol. of recycled or virgin carbon fibres was found to provide the desirable synergy between structural performance, cost and self-sensing properties, yielding a 50–60% increase in flexural strength, and good piezoresistivity with a gauge factor of 90–110. In contrast, the use of graphite powder resulted in composites with poor self-sensing ability even at the highest content examined (3%vol.), also accompanied by a reduction in compressive strength up to 33%.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02590-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02590-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of electrically conductive inclusions in structural materials can impart self-sensing functionalities, making them ideal for structural health monitoring applications. However, the use of more sustainable alternatives and their effect on key engineering properties remain largely unexplored, while the adoption of different testing protocols for the characterisation of electrical/self-sensing properties can lead to different results, thus questioning their reliability, even for existing smart composites. This paper investigates systematically the effect of recycled carbon fibres and graphite powder on the mechanical, electrical, transport properties and piezoresistive performance of cementitious mortars. Virgin carbon fibres, at dosages equivalent to those of recycled fibres, were also examined to establish a performance benchmark. Fibre content ranged from 0.05% to 1% vol., while graphite powder was added as sand replacement at contents varying from 0.3% to 3% vol. The effect of existing testing protocols and electrode layout on the piezoresistive performance was also examined, and the associated limitations and challenges are discussed in detail. The results demonstrate the potential of recycled carbon fibres as a cost-effective alternative in smart applications, without compromising electrical and piezoresistive performance. The use of 0.25%vol. of recycled or virgin carbon fibres was found to provide the desirable synergy between structural performance, cost and self-sensing properties, yielding a 50–60% increase in flexural strength, and good piezoresistivity with a gauge factor of 90–110. In contrast, the use of graphite powder resulted in composites with poor self-sensing ability even at the highest content examined (3%vol.), also accompanied by a reduction in compressive strength up to 33%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用可选导电内含物加固的迫击炮的机电性能
在结构材料中加入导电内含物可以赋予自传感功能,使其成为结构健康监测应用的理想选择。然而,使用更可持续的替代品及其对关键工程性能的影响在很大程度上仍未被探索,而采用不同的测试协议来表征电/自传感性能可能会导致不同的结果,从而质疑其可靠性,即使对现有的智能复合材料也是如此。本文系统地研究了再生碳纤维和石墨粉对胶凝砂浆的力学、电学、输运性能和压阻性能的影响。研究人员还测试了与回收纤维剂量相当的原始碳纤维,以建立性能基准。纤维含量范围为0.05%至1% vol,而石墨粉作为砂的替代物添加的含量范围为0.3%至3% vol。还研究了现有测试方案和电极布局对压阻性能的影响,并详细讨论了相关的限制和挑战。研究结果表明,在不影响电气和压阻性能的情况下,再生碳纤维在智能应用中作为一种具有成本效益的替代品具有潜力。使用0.25%vol。研究发现,再生或原生碳纤维在结构性能、成本和自感知性能之间提供了理想的协同作用,其抗弯强度提高了50-60%,并且具有良好的压阻性,测量系数为90-110。相比之下,石墨粉的使用导致复合材料的自感知能力较差,即使在最高含量(3%vol.)的情况下,也伴随着抗压强度降低高达33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Textile-Reinforced Mortar (TRM) for retrofitting masonry structures: advantages, challenges and future potential Rethinking unfired clay based materials through modification with natural polysaccharides for sustainable building solutions Multi-scale characterization of aging-induced evolution in physicochemical properties and adhesion behavior at asphalt-aggregate interfaces Study the segregation of fresh self-compacting concrete via coupling smoothed particle hydrodynamics and discrete element method Analytical prediction and experimental validation of wet shotcrete pumping using various rheological models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1