Simulation of the Outflow of Supersonic Jets into a Rarefied Medium in Pulse Modes

IF 0.4 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Instruments and Experimental Techniques Pub Date : 2025-02-03 DOI:10.1134/S0020441224701550
A. E. Zarvin, V. V. Kalyada, A. S. Yaskin, K. A. Dubrovin, E. D. Dering, V. E. Khudozhitkov
{"title":"Simulation of the Outflow of Supersonic Jets into a Rarefied Medium in Pulse Modes","authors":"A. E. Zarvin,&nbsp;V. V. Kalyada,&nbsp;A. S. Yaskin,&nbsp;K. A. Dubrovin,&nbsp;E. D. Dering,&nbsp;V. E. Khudozhitkov","doi":"10.1134/S0020441224701550","DOIUrl":null,"url":null,"abstract":"<p>The use of electromagnetic valves for generating pulsed flow modes of a high-density supersonic jet in the second and submillisecond ranges is analyzed. It has been shown that “slow” second-range valves do not allow achieving a quasi-stationary mode with a high gas flow rate compared to a stationary outflow; submillisecond-range “fast” valves generate gas pulses with parameters necessary to simulate high-flow conditions at background gas pressures that do not overload the high-vacuum pumping system. It is found that the submillisecond valve provides the ability to simulate instantaneous flow rates of up to several tens of grams of a product per second in a pulse at pressures in the prechamber of up to 2 MPa and a pressure in the surrounding space of 1–3 Pa. A set of sonic and supersonic nozzles has been implemented with an electromagnetic valve device and power-supply and control systems that provide the gas outflow from the nozzle prechamber during a controlled period of time from 0.3 to 1.5 ms with a given duty cycle varying from several tens to thousands. The generated gas pulses have a trapezoidal shape with a quasi-stationary core.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":"67 5","pages":"1051 - 1058"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0020441224701550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of electromagnetic valves for generating pulsed flow modes of a high-density supersonic jet in the second and submillisecond ranges is analyzed. It has been shown that “slow” second-range valves do not allow achieving a quasi-stationary mode with a high gas flow rate compared to a stationary outflow; submillisecond-range “fast” valves generate gas pulses with parameters necessary to simulate high-flow conditions at background gas pressures that do not overload the high-vacuum pumping system. It is found that the submillisecond valve provides the ability to simulate instantaneous flow rates of up to several tens of grams of a product per second in a pulse at pressures in the prechamber of up to 2 MPa and a pressure in the surrounding space of 1–3 Pa. A set of sonic and supersonic nozzles has been implemented with an electromagnetic valve device and power-supply and control systems that provide the gas outflow from the nozzle prechamber during a controlled period of time from 0.3 to 1.5 ms with a given duty cycle varying from several tens to thousands. The generated gas pulses have a trapezoidal shape with a quasi-stationary core.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Instruments and Experimental Techniques
Instruments and Experimental Techniques 工程技术-工程:综合
CiteScore
1.20
自引率
33.30%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.
期刊最新文献
Prototype Readout Electronics for Capacitive Detectors Results of Using the Anode of a Controlled Spark Gap as a Langmuir Probe Energy Resolution of a Spectrometer with an Oriented Crystal Converter Laser-Calibration System of the Baiklal-GVD Neutrino Telescope Magnetic Field Measurement System in Wide-Aperture Magnets of Physical Setups at the U-70 Accelerator Complex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1