LiNbO3 coating improves property of LiNi0.5Mn1.5O4 for lithium-ion battery cathode materials

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-12-07 DOI:10.1007/s11581-024-05991-7
Jing Zhang, Xiaofeng Cai, Jinfeng Zeng, Jiayan Liang, Boxin Zheng, Manni Chen, Yujie Wang, Weimin Zhao, Wei Yang
{"title":"LiNbO3 coating improves property of LiNi0.5Mn1.5O4 for lithium-ion battery cathode materials","authors":"Jing Zhang,&nbsp;Xiaofeng Cai,&nbsp;Jinfeng Zeng,&nbsp;Jiayan Liang,&nbsp;Boxin Zheng,&nbsp;Manni Chen,&nbsp;Yujie Wang,&nbsp;Weimin Zhao,&nbsp;Wei Yang","doi":"10.1007/s11581-024-05991-7","DOIUrl":null,"url":null,"abstract":"<div><p>Because of high energy density and Co-free, spinel LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> materials are considered as potential replacement for availably commercial cathodes like LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>z</sub>O<sub>2</sub> (x + y + z = 1) and LiFePO₄. However, the corrosion and interfacial breakdown of electrolyte at high voltage severely limit the extensive application of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>. In this paper, LiNbO<sub>3</sub> was used as cladding for LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cathode material by convenient and feasible wet-chemical technique. The introduction of Nb<sup>5+</sup> into spinel structure usually replaces Mn ions at octahedral site, thus increasing the content of Mn<sup>3+</sup>. Improve the electronic transition channel and electronic transition carrier of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> materials. Therefore, while LiNbO<sub>3</sub> cladding layer protects materials from HF attack, the subsurface-rich Mn<sup>3+</sup> is considered to boost high-rate performance. When the mass ratio of LiNbO<sub>3</sub> coating is 3%, the coating-modified LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> material exhibits the best property. The specific discharge capacity was 129.2 mAh·g<sup>−1</sup> with 93.5% capacity retention rate after 100 cycles at 1 C, the specific discharge capacity reached 116.0 mAh·g<sup>−1</sup> at 5 C. Compared with uncoated LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> material, it shows outstanding electrochemical properties.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1265 - 1273"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05991-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Because of high energy density and Co-free, spinel LiNi0.5Mn1.5O4 materials are considered as potential replacement for availably commercial cathodes like LiNixMnyCozO2 (x + y + z = 1) and LiFePO₄. However, the corrosion and interfacial breakdown of electrolyte at high voltage severely limit the extensive application of LiNi0.5Mn1.5O4. In this paper, LiNbO3 was used as cladding for LiNi0.5Mn1.5O4 cathode material by convenient and feasible wet-chemical technique. The introduction of Nb5+ into spinel structure usually replaces Mn ions at octahedral site, thus increasing the content of Mn3+. Improve the electronic transition channel and electronic transition carrier of LiNi0.5Mn1.5O4 materials. Therefore, while LiNbO3 cladding layer protects materials from HF attack, the subsurface-rich Mn3+ is considered to boost high-rate performance. When the mass ratio of LiNbO3 coating is 3%, the coating-modified LiNi0.5Mn1.5O4 material exhibits the best property. The specific discharge capacity was 129.2 mAh·g−1 with 93.5% capacity retention rate after 100 cycles at 1 C, the specific discharge capacity reached 116.0 mAh·g−1 at 5 C. Compared with uncoated LiNi0.5Mn1.5O4 material, it shows outstanding electrochemical properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
The synthesis of β-MnO2 nanorods as cathode and the effect and mechanism of graphene composite on the performance of Li–MnO2 primary battery SOC estimation of high capacity NMC lithium-ion battery using ensemble Kalman Bucy filter Novel NiCo2S4 nanorod arrays grown on carbon nanofibers as high-performance anodes for sodium-ion batteries Research progress of zinc-nickel battery anode materials: challenges and development strategies Comparative studies of the proton conductivity behavior during hydration of sulfonated perfluorinated and hydrocarbon proton exchange membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1