{"title":"A ground motion construction method considering spectrum characteristics as supplement for conditional mean spectrum","authors":"Hui Zhang, Dinghao Yu, Gang Li, Zhiqian Dong","doi":"10.1007/s10518-024-02084-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the performance-based earthquake engineering, the ground motion (GM) records are generally selected for performing nonlinear time history analysis to evaluate the performance of the structure. However, due to the limited GM database, it is difficult to select GM sequences with high intensity by amplitude-scaled method for condition mean spectrum (CMS) to reasonably evaluate the performance of the structure. To solve the problem, an efficient method for constructing GM sequences is proposed as a supplement to traditional CMS. To construct GM sequences that meets the specific response spectrum sequence, a target response spectrum (conditional spectrum) sequence with physical meaning is simulated firstly based on the CMS and Latin hypercube sampling. Then, the time domain spectral matching (TDSM) method is introduced to generate GM sequences matching the target response spectrum sequences constructed above by adding adjustment wavelet functions so that available ground acceleration time history with high intensity and long period can be obtained from the limited GM database. However, in the previous studies, the coefficient used to constrain the adjustment wavelet functions usually is taken as an empirical constant value, which makes the efficiency of the iterative calculation unable to be guaranteed by the TDSM method. The particle swarm optimization method is introduced to optimize the TDSM method to find the best coefficient used to constrain the adjustment wavelet functions to improve the calculation efficiency and accuracy. To verify the effectiveness of the proposed method, the GM sequences selected by amplitude-scaled and proposed method are input into single-degree-of-freedom and multi-degree-of-freedom systems. The result shows that the proposed method for constructing GM sequences can be used as a supplement for the traditional CMS.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 2","pages":"579 - 603"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02084-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the performance-based earthquake engineering, the ground motion (GM) records are generally selected for performing nonlinear time history analysis to evaluate the performance of the structure. However, due to the limited GM database, it is difficult to select GM sequences with high intensity by amplitude-scaled method for condition mean spectrum (CMS) to reasonably evaluate the performance of the structure. To solve the problem, an efficient method for constructing GM sequences is proposed as a supplement to traditional CMS. To construct GM sequences that meets the specific response spectrum sequence, a target response spectrum (conditional spectrum) sequence with physical meaning is simulated firstly based on the CMS and Latin hypercube sampling. Then, the time domain spectral matching (TDSM) method is introduced to generate GM sequences matching the target response spectrum sequences constructed above by adding adjustment wavelet functions so that available ground acceleration time history with high intensity and long period can be obtained from the limited GM database. However, in the previous studies, the coefficient used to constrain the adjustment wavelet functions usually is taken as an empirical constant value, which makes the efficiency of the iterative calculation unable to be guaranteed by the TDSM method. The particle swarm optimization method is introduced to optimize the TDSM method to find the best coefficient used to constrain the adjustment wavelet functions to improve the calculation efficiency and accuracy. To verify the effectiveness of the proposed method, the GM sequences selected by amplitude-scaled and proposed method are input into single-degree-of-freedom and multi-degree-of-freedom systems. The result shows that the proposed method for constructing GM sequences can be used as a supplement for the traditional CMS.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.