{"title":"Generation of effective massive Spin-2 fields through spontaneous symmetry breaking of scalar field","authors":"Susobhan Mandal, S. Shankaranarayanan","doi":"10.1007/s10714-025-03367-4","DOIUrl":null,"url":null,"abstract":"<div><p>General relativity and quantum field theory are the cornerstones of our understanding of physical processes, from subatomic to cosmic scales. While both theories work remarkably well in their tested domains, they show minimal overlap. However, our research challenges this separation by revealing that non-perturbative effects bridge these distinct domains. We introduce a novel mechanism wherein, at linear order, spin-2 fields around an arbitrary background acquire <i>effective mass</i> due to the spontaneous symmetry breaking (SSB) of either global or local symmetry of complex scalar field minimally coupled to gravity. The action of the spin-2 field is identical to the extended Fierz-Pauli (FP) action, corresponding to the mass deformation parameter <span>\\(\\alpha = 1/2\\)</span>. We show that this occurs due to the effect of SSB on the variation of the energy-momentum tensor of the matter field, which has a dominant effect during SSB. The extended FP action has a salient feature, compared to the standard FP action: the action has 6 degrees of freedom with no ghosts. For local <i>U</i>(1) SSB, we establish that the effective mass of spin-2 fields is related to the mass of the gauge boson and the electric charge of the complex scalar field. Interestingly, our results indicate that the millicharged dark matter scalar fields, generating dark photons, can produce a mass of spin-2 fields of the same order as the Hubble constant <span>\\((H_0)\\)</span>. Hence, we argue that the dark sector offers a natural explanation for the acceleration of the current Universe.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03367-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
General relativity and quantum field theory are the cornerstones of our understanding of physical processes, from subatomic to cosmic scales. While both theories work remarkably well in their tested domains, they show minimal overlap. However, our research challenges this separation by revealing that non-perturbative effects bridge these distinct domains. We introduce a novel mechanism wherein, at linear order, spin-2 fields around an arbitrary background acquire effective mass due to the spontaneous symmetry breaking (SSB) of either global or local symmetry of complex scalar field minimally coupled to gravity. The action of the spin-2 field is identical to the extended Fierz-Pauli (FP) action, corresponding to the mass deformation parameter \(\alpha = 1/2\). We show that this occurs due to the effect of SSB on the variation of the energy-momentum tensor of the matter field, which has a dominant effect during SSB. The extended FP action has a salient feature, compared to the standard FP action: the action has 6 degrees of freedom with no ghosts. For local U(1) SSB, we establish that the effective mass of spin-2 fields is related to the mass of the gauge boson and the electric charge of the complex scalar field. Interestingly, our results indicate that the millicharged dark matter scalar fields, generating dark photons, can produce a mass of spin-2 fields of the same order as the Hubble constant \((H_0)\). Hence, we argue that the dark sector offers a natural explanation for the acceleration of the current Universe.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.