Application of dry high-energy ball-milling to increase the density and grain boundary conductivity of solid ceramic electrolytes: Li1.3Al0.3Ti1.7(PO4)3 as a case study
Alexander A. Shindrov, Maria G. Skachilova, Alexandra A. Shapovalova, Nina V. Kosova
{"title":"Application of dry high-energy ball-milling to increase the density and grain boundary conductivity of solid ceramic electrolytes: Li1.3Al0.3Ti1.7(PO4)3 as a case study","authors":"Alexander A. Shindrov, Maria G. Skachilova, Alexandra A. Shapovalova, Nina V. Kosova","doi":"10.1007/s11581-024-05986-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the effect of high energy ball milling (HEBM) on the density and conductive properties of as-prepared Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) solid ceramic electrolyte has been demonstrated. It has been shown that the composition of the LATP phase remains unchanged after HEBM. A gradual decrease in the average crystallite size was observed during the HEBM duration. The multimodal particle size distribution in HEBM samples has a positive effect on their densification during pressing, allowing the use of low pressure (~ 5 MPa). High-density LATP ceramics (~ 89% of the theoretical value) with an ionic conductivity of 2.15∙10<sup>−4</sup> S∙cm<sup>−1</sup> were obtained after 30 min of HEBM. The value of electronic conductivity obtained by the analysis of DC polarization using blocking Ag electrodes is equal to 8.3∙10<sup>−9</sup> S∙cm<sup>−1</sup>. The HEBM approach is accessible and easy to implement. This method does not require high pressure, long sintering temperature and/or time, and additional reagents such as fusible additives. The use of HEBM allows the density and ionic conductivity of the resulting ceramics to be adjusted.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1351 - 1360"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05986-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the effect of high energy ball milling (HEBM) on the density and conductive properties of as-prepared Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid ceramic electrolyte has been demonstrated. It has been shown that the composition of the LATP phase remains unchanged after HEBM. A gradual decrease in the average crystallite size was observed during the HEBM duration. The multimodal particle size distribution in HEBM samples has a positive effect on their densification during pressing, allowing the use of low pressure (~ 5 MPa). High-density LATP ceramics (~ 89% of the theoretical value) with an ionic conductivity of 2.15∙10−4 S∙cm−1 were obtained after 30 min of HEBM. The value of electronic conductivity obtained by the analysis of DC polarization using blocking Ag electrodes is equal to 8.3∙10−9 S∙cm−1. The HEBM approach is accessible and easy to implement. This method does not require high pressure, long sintering temperature and/or time, and additional reagents such as fusible additives. The use of HEBM allows the density and ionic conductivity of the resulting ceramics to be adjusted.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.