Rutuja B. Patil, Aditi D. Yadav, Chidanand M. Kanamadi, Sarita P. Patil
{"title":"Electrochemical advancements: MnO2-based electrode materials for supercapacitors","authors":"Rutuja B. Patil, Aditi D. Yadav, Chidanand M. Kanamadi, Sarita P. Patil","doi":"10.1007/s11581-024-06003-4","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors (SCs) have emerged as a promising energy-storage technology, bridging the power and energy density gap between conventional capacitors and batteries. Their high-power density, rapid charge–discharge rates, extended cycle life, and safe operation make them well-suited for next-generation energy applications. Among the materials investigated for SC electrodes, manganese oxide (MnO₂) is particularly promising due to its multiple oxidation states, high theoretical capacitance, and wide operating potential window. This review comprehensively examines recent advancements in MnO₂-based SCs, with an emphasis on MnO₂ composites incorporating carbon materials, conducting polymers (CPs), other transition metal oxides (TMOs), and metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). The synergistic effects and electrochemical performance improvements achieved through these composites are discussed in depth, highlighting strategies for stabilizing MnO₂’s cycling performance and enhancing energy storage through structural integration. Additionally, we address emerging trends and future directions in MnO₂ composite design for SC applications, underscoring their transformative potential for high-performance, scalable energy storage solutions.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1203 - 1231"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-06003-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors (SCs) have emerged as a promising energy-storage technology, bridging the power and energy density gap between conventional capacitors and batteries. Their high-power density, rapid charge–discharge rates, extended cycle life, and safe operation make them well-suited for next-generation energy applications. Among the materials investigated for SC electrodes, manganese oxide (MnO₂) is particularly promising due to its multiple oxidation states, high theoretical capacitance, and wide operating potential window. This review comprehensively examines recent advancements in MnO₂-based SCs, with an emphasis on MnO₂ composites incorporating carbon materials, conducting polymers (CPs), other transition metal oxides (TMOs), and metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). The synergistic effects and electrochemical performance improvements achieved through these composites are discussed in depth, highlighting strategies for stabilizing MnO₂’s cycling performance and enhancing energy storage through structural integration. Additionally, we address emerging trends and future directions in MnO₂ composite design for SC applications, underscoring their transformative potential for high-performance, scalable energy storage solutions.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.