Jun Zhang, Tao Long, Yangwen Liu, Zilang Zhong, Yang Zhang, XuChang Chen, Guanghuan Li
{"title":"Growth of trimetallic CeFeNi-MOF-74 on nickel foam as a bifunctional electrocatalyst for water splitting","authors":"Jun Zhang, Tao Long, Yangwen Liu, Zilang Zhong, Yang Zhang, XuChang Chen, Guanghuan Li","doi":"10.1007/s11581-024-06010-5","DOIUrl":null,"url":null,"abstract":"<p>In order to facilitate the industrial synthesis of hydrogen from electrolytic water on a wide scale, high-performance non-precious metal electrocatalysts that can substitute precious metal electrocatalysts must be developed. This paper reports a trimetallic CeFeNi-MOF-74 electrocatalyst grown on nickel foam (NF) by solvothermal method. The introduction of trimetallics gives the metal–organic framework (MOF) materials synergistic and complementary properties, resulting in better catalytic properties of the materials. Tuning the electronic structure of materials to Optimise electrocatalytic performance by adjusting metal ratio. It was found that the prepared Ce<sub>0.9</sub>FeNi-MOF-74 exhibited excellent electrocatalytic activity and stability in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In 1 M KOH, the overpotential is only 262 mV for HER at a current density of 100 mA cm<sup>−2</sup> and 257 mV for OER at a current density of 100 mA cm<sup>−2</sup>. For overall water splitting (OWS), a low voltage of only 1.68 V is required to achieve a 10 mA cm<sup>−2</sup> current density. The excellent catalytic performance of Ce<sub>0.9</sub>FeNi-MOF-74 exceeds that of many commercial catalysts. This study provides new insights into the synthesis of high-performance and stable MOF electrocatalysts.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 2","pages":"1937 - 1946"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-06010-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to facilitate the industrial synthesis of hydrogen from electrolytic water on a wide scale, high-performance non-precious metal electrocatalysts that can substitute precious metal electrocatalysts must be developed. This paper reports a trimetallic CeFeNi-MOF-74 electrocatalyst grown on nickel foam (NF) by solvothermal method. The introduction of trimetallics gives the metal–organic framework (MOF) materials synergistic and complementary properties, resulting in better catalytic properties of the materials. Tuning the electronic structure of materials to Optimise electrocatalytic performance by adjusting metal ratio. It was found that the prepared Ce0.9FeNi-MOF-74 exhibited excellent electrocatalytic activity and stability in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In 1 M KOH, the overpotential is only 262 mV for HER at a current density of 100 mA cm−2 and 257 mV for OER at a current density of 100 mA cm−2. For overall water splitting (OWS), a low voltage of only 1.68 V is required to achieve a 10 mA cm−2 current density. The excellent catalytic performance of Ce0.9FeNi-MOF-74 exceeds that of many commercial catalysts. This study provides new insights into the synthesis of high-performance and stable MOF electrocatalysts.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.