Efficient and rapid sunlight-driven photocatalytic degradation of methylene blue dye using multiferroic BiFeO3 nanoparticles

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-11-06 DOI:10.1007/s10971-024-06607-2
Madhu Verma, Ajay Kumar, Vijay Kumar Thakur, Akanksha Maurya, Sachin Kumar, Saurabh Singh, Simant Kumar Srivastav
{"title":"Efficient and rapid sunlight-driven photocatalytic degradation of methylene blue dye using multiferroic BiFeO3 nanoparticles","authors":"Madhu Verma,&nbsp;Ajay Kumar,&nbsp;Vijay Kumar Thakur,&nbsp;Akanksha Maurya,&nbsp;Sachin Kumar,&nbsp;Saurabh Singh,&nbsp;Simant Kumar Srivastav","doi":"10.1007/s10971-024-06607-2","DOIUrl":null,"url":null,"abstract":"<div><p>The current investigation presents a facile and cost-effective sol-gel approach for the synthesis of phase-pure multiferroic bismuth ferrite (BiFeO<sub>3</sub>) nanoparticles (BFO NPs) by using propylene glycol as a complexing agent, intended for use as a photocatalyst to efficiently degrade organic dyes in aqueous solutions under natural sunlight. Characterization techniques, including thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), elucidated a plausible reaction pathway for the formation of phase-pure BFO NPs. Rietveld refinement of the XRD data, in conjunction with transmission electron microscopy (TEM) and Raman spectroscopy, confirmed the synthesis of single-phase BFO NPs at 400 °C, displaying a space group of R3c and an average crystallite size of 25 nm. UV–visible diffuse reflectance spectroscopy revealed an absorption cut-off wavelength near 590 nm, corresponding to a band gap of 2.08 eV, indicating the capability of BFO NPs to absorb visible light within the 400–590 nm range. BFO NPs have shown efficient and rapid photocatalytic degradation of methylene blue (MB) in acidic, neutral, and basic pH conditions under natural sunlight. This is attributed to the intrinsic ferroelectric and ferromagnetic ordering present in synthesized BFO NPs which facilitates the separation and migration of photoinduced charges through band bending phenomena at the interface.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 2","pages":"356 - 373"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06607-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current investigation presents a facile and cost-effective sol-gel approach for the synthesis of phase-pure multiferroic bismuth ferrite (BiFeO3) nanoparticles (BFO NPs) by using propylene glycol as a complexing agent, intended for use as a photocatalyst to efficiently degrade organic dyes in aqueous solutions under natural sunlight. Characterization techniques, including thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), elucidated a plausible reaction pathway for the formation of phase-pure BFO NPs. Rietveld refinement of the XRD data, in conjunction with transmission electron microscopy (TEM) and Raman spectroscopy, confirmed the synthesis of single-phase BFO NPs at 400 °C, displaying a space group of R3c and an average crystallite size of 25 nm. UV–visible diffuse reflectance spectroscopy revealed an absorption cut-off wavelength near 590 nm, corresponding to a band gap of 2.08 eV, indicating the capability of BFO NPs to absorb visible light within the 400–590 nm range. BFO NPs have shown efficient and rapid photocatalytic degradation of methylene blue (MB) in acidic, neutral, and basic pH conditions under natural sunlight. This is attributed to the intrinsic ferroelectric and ferromagnetic ordering present in synthesized BFO NPs which facilitates the separation and migration of photoinduced charges through band bending phenomena at the interface.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Density functional theory studies on the reaction mechanism of alumina synthesis with a new sol-gel routine The effect on zirconyl type salt on the phase composition, particle size and sinterability of zirconia based powders obtained via reversed co-precipitation Solvent engineering of SnO2 ETL for enhanced performance of carbon-based CsPbIBr2 PSCs Development of two novel supramolecular metallogels of Mn(II) and Zn(II)-ion derived from L-(+) tartaric acid for fabricating light responsive junction type semiconducting diodes with non-ohmic conduction mechanism Exploring the ZnO/CuO/g-C3N4 nanocomposite for superior energy storage capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1