Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2024-09-12 DOI:10.1007/s40195-024-01758-1
Sai Chen, Shuangjie Chu, Bo Mao
{"title":"Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties","authors":"Sai Chen,&nbsp;Shuangjie Chu,&nbsp;Bo Mao","doi":"10.1007/s40195-024-01758-1","DOIUrl":null,"url":null,"abstract":"<div><p>Iron-based metal matrix composites (IMMCs) have attracted significant research attention due to their high specific stiffness and strength, making them potentially suitable for various engineering applications. Microstructural design, including the selection of reinforcement and matrix phases, the reinforcement volume fraction, and the interface issues are essential factors determining the engineering performance of IMMCs. A variety of fabrication methods have been developed to manufacture IMMCs in recent years. This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design, fabrication methods, and their engineering performance. The microstructure design issues of IMMC are firstly discussed, including the reinforcement and matrix phase selection criteria, interface geometry and characteristics, and the bonding mechanism. The fabrication methods, including liquid state, solid state, and gas-mixing processing are comprehensively reviewed and compared. The engineering performance of IMMCs in terms of elastic modulus, hardness and wear resistance, tensile and fracture behavior is reviewed. Finally, the current challenges of the IMMCs are highlighted, followed by the discussion and outlook of the future research directions of IMMCs.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 1","pages":"1 - 44"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01758-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-based metal matrix composites (IMMCs) have attracted significant research attention due to their high specific stiffness and strength, making them potentially suitable for various engineering applications. Microstructural design, including the selection of reinforcement and matrix phases, the reinforcement volume fraction, and the interface issues are essential factors determining the engineering performance of IMMCs. A variety of fabrication methods have been developed to manufacture IMMCs in recent years. This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design, fabrication methods, and their engineering performance. The microstructure design issues of IMMC are firstly discussed, including the reinforcement and matrix phase selection criteria, interface geometry and characteristics, and the bonding mechanism. The fabrication methods, including liquid state, solid state, and gas-mixing processing are comprehensively reviewed and compared. The engineering performance of IMMCs in terms of elastic modulus, hardness and wear resistance, tensile and fracture behavior is reviewed. Finally, the current challenges of the IMMCs are highlighted, followed by the discussion and outlook of the future research directions of IMMCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Unravel the Spinodal Decomposition Kinetics in (FeCoCrNi)85(AlCu)15 Alloy through Small-Angle Neutron Scattering Effects of Thermal Aging on the Oxidation Behavior of 316L Austenitic Steel in 600 °C Supercritical Fired Boiler: Mechanism Based on Interface Features ZIF-8 Modified Ce–Sol–gel Film on Rebar for Enhancing Corrosion Resistance Design of Ultra-Strong As-Cast Titanium Alloy at 600 ℃ by Using Cluster Formula Heterostructured NiCrTi Alloy Prepared by Spark Plasma Sintering with Enhanced Mechanical Properties, Corrosion and Tribocorrosion Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1