Kareem Yusuf, Tauseef Munawar, Nadir Abbas, Iram Manzoor, Abdul Ghafoor Abid, Zobia Siddique, Jafar Hussain Shah
{"title":"Synergistic effects of SrCeO3-ZnTe heterostructures on oxygen evolution reaction performance","authors":"Kareem Yusuf, Tauseef Munawar, Nadir Abbas, Iram Manzoor, Abdul Ghafoor Abid, Zobia Siddique, Jafar Hussain Shah","doi":"10.1007/s10971-024-06640-1","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen production through water splitting is considered a promising strategy to produce renewable energy to mitigate energy and environmental challenges simultaneously. However, the critical challenge is to overcome the difficulties associated with the rate-determining step of water splitting, which is the oxygen evolution reaction (OER). New materials and strategies are highly demanded to overcome this vital issue. Considering the importance of the topic, in this study, we have synthesized a novel and cost-effective hetero-structured material (SrCeO<sub>3</sub>-ZnTe) using a facile sonochemical and hydrothermal synthesis route to employ for OER. X-ray diffraction (XRD), Fourier-Transform Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission electron Microscopy (TEM), Energy-Dispersive X-ray spectroscopy (EDS) analysis were employed to study the structural and physicochemical properties of the as-prepared SrCeO<sub>3</sub>-ZnTe. Compared to the individual electrocatalysts (SrCeO<sub>3</sub> and ZnTe), the heterostructure showed the ability of robust electron transferring and diffusion due to defective site interactions between ZnTe and SrCeO<sub>3</sub>, as confirmed via cyclic voltammetry (CV). Thus, the SrCeO<sub>3</sub>-ZnTe nanocomposite showed a lower overpotential of 310 mV and a smaller Tafel slope of 36 mV.dec<sup>−1</sup> and enhanced stability for 30 h without any significant losses in current density as confirmed via chronoamperometry. The remarkable OER performance of the synthesized heterostructure electrocatalyst was attributed to the synergistic effects of both individual ZnTe and SrCeO<sub>3</sub> acting synergistically in the heterostructure.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 2","pages":"592 - 605"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06640-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen production through water splitting is considered a promising strategy to produce renewable energy to mitigate energy and environmental challenges simultaneously. However, the critical challenge is to overcome the difficulties associated with the rate-determining step of water splitting, which is the oxygen evolution reaction (OER). New materials and strategies are highly demanded to overcome this vital issue. Considering the importance of the topic, in this study, we have synthesized a novel and cost-effective hetero-structured material (SrCeO3-ZnTe) using a facile sonochemical and hydrothermal synthesis route to employ for OER. X-ray diffraction (XRD), Fourier-Transform Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission electron Microscopy (TEM), Energy-Dispersive X-ray spectroscopy (EDS) analysis were employed to study the structural and physicochemical properties of the as-prepared SrCeO3-ZnTe. Compared to the individual electrocatalysts (SrCeO3 and ZnTe), the heterostructure showed the ability of robust electron transferring and diffusion due to defective site interactions between ZnTe and SrCeO3, as confirmed via cyclic voltammetry (CV). Thus, the SrCeO3-ZnTe nanocomposite showed a lower overpotential of 310 mV and a smaller Tafel slope of 36 mV.dec−1 and enhanced stability for 30 h without any significant losses in current density as confirmed via chronoamperometry. The remarkable OER performance of the synthesized heterostructure electrocatalyst was attributed to the synergistic effects of both individual ZnTe and SrCeO3 acting synergistically in the heterostructure.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.