Photocatalytic technology has received widespread attention as an effective means of treating organic pollutants in wastewater, but the development of effective and sustainable photocatalysts remains a serious challenge. In this study, a novel Mn0.2Cd0.8S (MCS)/Bi4O5Br2 (BOB) heterojunction photocatalyst was successfully prepared by a two-step solvothermal method. The photocatalytic activity of the MCS/BOB heterojunction photocatalyst for degrading Rhodamine B (RhB) is significantly enhanced relative to Mn0.2Cd0.8S and Bi4O5Br2. When the molar content of Mn0.2Cd0.8S was 15% of Bi4O5Br2, the prepared 15% MCS/BOB had the best photocatalytic performance toward RhB with the degradation rate of 91.7% under 60 min of visible light irradiation. The apparent rate constant of 15% MCS/BOB is 10 and 7 times higher than that of Mn0.2Cd0.8S and Bi4O5Br2, respectively. The excellent photocatalytic performance is associated with the increased specific surface area, extended light absorption range, and proper construction of Z-scheme heterojunction that facilitate effective charge separation and excellent redox capacity. In addition, the heterojunction photocatalyst shows remarkable photocatalytic stability. This study constructs a novel and effective Z-scheme heterojunction photocatalyst and promotes the exploration of photocatalyst in the purification of organic wastewater.