Zhigang Du, Shaoquan Ni, Jeng-Shyang Pan, Shuchuan Chu
{"title":"A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance","authors":"Zhigang Du, Shaoquan Ni, Jeng-Shyang Pan, Shuchuan Chu","doi":"10.1007/s42235-024-00613-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer (SMOGWO) as a novel methodology for addressing the complex problem of empty-heavy train allocation, with a focus on line utilization balance. By integrating surrogate models to approximate the objective functions, SMOGWO significantly improves the efficiency and accuracy of the optimization process. The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite, where SMOGWO achieves a superiority rate of 76.67% compared to other leading multi-objective algorithms. Furthermore, the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation, which validates its ability to balance line capacity, minimize transportation costs, and optimize the technical combination of heavy trains. The research highlights SMOGWO’s potential as a robust solution for optimization challenges in railway transportation, offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 1","pages":"383 - 397"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00613-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer (SMOGWO) as a novel methodology for addressing the complex problem of empty-heavy train allocation, with a focus on line utilization balance. By integrating surrogate models to approximate the objective functions, SMOGWO significantly improves the efficiency and accuracy of the optimization process. The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite, where SMOGWO achieves a superiority rate of 76.67% compared to other leading multi-objective algorithms. Furthermore, the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation, which validates its ability to balance line capacity, minimize transportation costs, and optimize the technical combination of heavy trains. The research highlights SMOGWO’s potential as a robust solution for optimization challenges in railway transportation, offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.