Nanocomposites Prepared in Supercritical Carbon Dioxide from Epoxidized Soybean Oil, Citric Acid, and Cellulose Nanofibers

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL Journal of Polymers and the Environment Pub Date : 2024-12-14 DOI:10.1007/s10924-024-03471-7
Zengshe Liu, H. N. Cheng, Atanu Biswas, Michael Jackson, Nasib Qureshi
{"title":"Nanocomposites Prepared in Supercritical Carbon Dioxide from Epoxidized Soybean Oil, Citric Acid, and Cellulose Nanofibers","authors":"Zengshe Liu,&nbsp;H. N. Cheng,&nbsp;Atanu Biswas,&nbsp;Michael Jackson,&nbsp;Nasib Qureshi","doi":"10.1007/s10924-024-03471-7","DOIUrl":null,"url":null,"abstract":"<div><p>There is increasing interest in using green and sustainable materials as replacements for petroleum-based polymeric materials. Plant oils are of particular interest as raw materials for the synthesis of new polymers for different applications. In this work, we have made novel green nanocomposites comprising epoxidized soybean oil (ESO), citric acid (CA), and cellulose nanofibrils (CNF) using supercritical carbon dioxide, without a catalyst or an accelerator. Both polymeric foamed products and bubble-free products could be obtained. The chemical structure of the new products was studied by solid-state and solution-state nuclear magnetic resonance (NMR), together with dynamic mechanical properties and glass transition temperature (T<sub>g</sub>). The product was found to contain low-molecular-weight polymers of ESO involving tetrahydrofuran structures in the polymer backbone and ester crosslinks between ESO and CA. The incorporation of nanocellulose was found to increase the T<sub>g</sub> and the storage modulus (G’) of the products. The G’ at 25 °C ranged from 0.08 MPa to 0.63 MPa with CNF loading from 0.00 g to 0.24 g. The T<sub>g</sub> measured by dynamic measurement ranged from 6.41 °C to 11.07 °C. Effect of CO<sub>2</sub> pressure on the dynamic mechanical properties and T<sub>g</sub> showed that the G’ at 25 °C ranged from 0.10 MPa to 0.14 MPa when the pressure changed from 55.2 bar to 75.8 bar, while the T<sub>g</sub> changed from 6.70 °C to 7.28 °C under these conditions. With the aids of gel contents, TGA and FTIR results, the formation of crosslinked nanocomposites would be confirmed.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 2","pages":"1117 - 1130"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03471-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

There is increasing interest in using green and sustainable materials as replacements for petroleum-based polymeric materials. Plant oils are of particular interest as raw materials for the synthesis of new polymers for different applications. In this work, we have made novel green nanocomposites comprising epoxidized soybean oil (ESO), citric acid (CA), and cellulose nanofibrils (CNF) using supercritical carbon dioxide, without a catalyst or an accelerator. Both polymeric foamed products and bubble-free products could be obtained. The chemical structure of the new products was studied by solid-state and solution-state nuclear magnetic resonance (NMR), together with dynamic mechanical properties and glass transition temperature (Tg). The product was found to contain low-molecular-weight polymers of ESO involving tetrahydrofuran structures in the polymer backbone and ester crosslinks between ESO and CA. The incorporation of nanocellulose was found to increase the Tg and the storage modulus (G’) of the products. The G’ at 25 °C ranged from 0.08 MPa to 0.63 MPa with CNF loading from 0.00 g to 0.24 g. The Tg measured by dynamic measurement ranged from 6.41 °C to 11.07 °C. Effect of CO2 pressure on the dynamic mechanical properties and Tg showed that the G’ at 25 °C ranged from 0.10 MPa to 0.14 MPa when the pressure changed from 55.2 bar to 75.8 bar, while the Tg changed from 6.70 °C to 7.28 °C under these conditions. With the aids of gel contents, TGA and FTIR results, the formation of crosslinked nanocomposites would be confirmed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
期刊最新文献
Structural Characterization of Microcapsules from Common Bee Pollen for the Development of Delivery Systems Synthesis and Characterization of Self-Healing Polymers Obtained from Polyphenols and Cyclic Carbonates of Amide Derivative of Macaw Palm Oil Synthesis and Characterization of Chitosan-Based Hydrogels Grafted Polyimidazolium as Nitrate Ion Adsorbent from Water and Investigating Biological Properties Recycle of Flexible Polyurethane Foam by Acidolysis and Reuse of Recovered Polyol Nanocomposites Prepared in Supercritical Carbon Dioxide from Epoxidized Soybean Oil, Citric Acid, and Cellulose Nanofibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1