{"title":"Stable geometries and magnetic properties in transition-metal-doped Sm5Co19 permanent magnet alloys: Insights from DFT","authors":"Cheng Fang, Zhi Yan, Xu-Jin Zhang, Jian-Hua Xiao, Fang Wang, Xiao-Hong Xu","doi":"10.1007/s11433-024-2593-5","DOIUrl":null,"url":null,"abstract":"<div><p>Sm<sub>5</sub>Co<sub>19</sub> permanent magnet alloy holds significant potential for applications due to its ultra-high intrinsic coercivity, low temperature coefficient of coercivity and high Curie temperature. However, its metastable nature poses challenges for experimental synthesis. Here we propose to use transition metal doping to effectively improve the structural stability and comprehensive magnetic properties of Sm<sub>5</sub>Co<sub>19</sub> based on first-principles calculations. We find that Sc, Ti, V, Cr, Mn, and Zr preferentially occupy the Sm-6c2 site, while Fe, Ni, Cu, and Zn preferentially occupy the Co-6c2, Co-18h1, Co-18h2, and Co-18h2 site, respectively. Additionally, doping elements at their optimal sites significantly enhance the structural stability of the doped system. Whether substituting Sm or Co sites, doping with Cr, Mn, and Fe significantly increases the total magnetic moment of the Sm<sub>5</sub>Co<sub>19</sub> system. Within the number of doping atoms range from 0 to 12, doping with Cr, Mn, and Fe enhances both the structural stability and the total magnetic moment of the Sm<sub>5</sub>Co<sub>19</sub> system, further confirming the significant impact of atomic site occupation on the performance of the doped system. This study presents a feasible approach for enhancing the structural stability of Sm<sub>5</sub>Co<sub>19</sub> permanent magnets and offers valuable theoretical guidance for the development of high-performance Sm-Co based permanent magnet materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2593-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sm5Co19 permanent magnet alloy holds significant potential for applications due to its ultra-high intrinsic coercivity, low temperature coefficient of coercivity and high Curie temperature. However, its metastable nature poses challenges for experimental synthesis. Here we propose to use transition metal doping to effectively improve the structural stability and comprehensive magnetic properties of Sm5Co19 based on first-principles calculations. We find that Sc, Ti, V, Cr, Mn, and Zr preferentially occupy the Sm-6c2 site, while Fe, Ni, Cu, and Zn preferentially occupy the Co-6c2, Co-18h1, Co-18h2, and Co-18h2 site, respectively. Additionally, doping elements at their optimal sites significantly enhance the structural stability of the doped system. Whether substituting Sm or Co sites, doping with Cr, Mn, and Fe significantly increases the total magnetic moment of the Sm5Co19 system. Within the number of doping atoms range from 0 to 12, doping with Cr, Mn, and Fe enhances both the structural stability and the total magnetic moment of the Sm5Co19 system, further confirming the significant impact of atomic site occupation on the performance of the doped system. This study presents a feasible approach for enhancing the structural stability of Sm5Co19 permanent magnets and offers valuable theoretical guidance for the development of high-performance Sm-Co based permanent magnet materials.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.