Bruna Wendt Böhmer-Maas, Laura Martins Fonseca, Francine Tavares da Silva, Guilherme Menegazzi, Deborah Murowaniecki Otero, Elder Pacheco da Cruz, Patrícia Silva Diaz, Elessandra da Rosa Zavareze, Rui Carlos Zambiazi
{"title":"Germinated and Non-germinated Wheat Starch Fibers for Encapsulation of TiO2","authors":"Bruna Wendt Böhmer-Maas, Laura Martins Fonseca, Francine Tavares da Silva, Guilherme Menegazzi, Deborah Murowaniecki Otero, Elder Pacheco da Cruz, Patrícia Silva Diaz, Elessandra da Rosa Zavareze, Rui Carlos Zambiazi","doi":"10.1007/s11483-025-09928-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to fabricate and characterize fibers based on germinated and non-germinated wheat starches incorporated with titanium dioxide (TiO<sub>2</sub>). Fibers made from germinated wheat starch (20% and 30%, w/v) and non-germinated wheat starch (20% and 30%, w/v), encapsulated with TiO<sub>2</sub> at concentrations of 0%, 3%, and 5% (w/v), were fabricated by electrospinning. The polymeric solutions were evaluated for electrical conductivity and rheology. Fibers were characterized by morphology, size distribution, thermogravimetric analysis, and infrared spectra. The electrical conductivity of the polymeric solutions increased with TiO<sub>2</sub> concentration. Rheological parameters showed non-Newtonian pseudoplastic behavior. The fibers exhibited homogeneous and cylindrical morphology. TiO<sub>2</sub> addition reduced the diameter of the fibers compared to the fibers without this compound and altered their thermal stability. Infrared spectra indicated interactions between both starches and TiO<sub>2</sub>. The results demonstrate the feasibility of fabrication fibers from germinated and non-germinated wheat starches with similar amylose content (30.2% and 29.5%, respectively) incorporating TiO<sub>2</sub>, as they exhibited comparable behavior. This application could enhance the value of germinated wheat starch, which typically has low economic value. Further research is needed to explore these starch fibers for active food packaging applications as ethylene absorbers.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09928-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to fabricate and characterize fibers based on germinated and non-germinated wheat starches incorporated with titanium dioxide (TiO2). Fibers made from germinated wheat starch (20% and 30%, w/v) and non-germinated wheat starch (20% and 30%, w/v), encapsulated with TiO2 at concentrations of 0%, 3%, and 5% (w/v), were fabricated by electrospinning. The polymeric solutions were evaluated for electrical conductivity and rheology. Fibers were characterized by morphology, size distribution, thermogravimetric analysis, and infrared spectra. The electrical conductivity of the polymeric solutions increased with TiO2 concentration. Rheological parameters showed non-Newtonian pseudoplastic behavior. The fibers exhibited homogeneous and cylindrical morphology. TiO2 addition reduced the diameter of the fibers compared to the fibers without this compound and altered their thermal stability. Infrared spectra indicated interactions between both starches and TiO2. The results demonstrate the feasibility of fabrication fibers from germinated and non-germinated wheat starches with similar amylose content (30.2% and 29.5%, respectively) incorporating TiO2, as they exhibited comparable behavior. This application could enhance the value of germinated wheat starch, which typically has low economic value. Further research is needed to explore these starch fibers for active food packaging applications as ethylene absorbers.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.