Kh. M. Kadiev, M. Ya. Visaliev, L. A. Zekel’, A. E. Batov, A. U. Dandaev, N. A. Kubrin
{"title":"Regeneration of the Catalyst Precursor for Hydroconversion of a Blend of Petroleum Tar and Polymer Waste","authors":"Kh. M. Kadiev, M. Ya. Visaliev, L. A. Zekel’, A. E. Batov, A. U. Dandaev, N. A. Kubrin","doi":"10.1134/S0965544124080073","DOIUrl":null,"url":null,"abstract":"<p>A procedure for regenerating the hydroconversion catalyst precursor was studied. The procedure involves separation of the catalyst concentrate from the hydrogenizate vacuum residue by filtration, heat treatment of the concentrate to obtain the ash residue, and leaching of compounds of Mo and other metals from the ash residue with aqueous ammonia and nitric acid. As shown by X-ray diffraction analysis, the ash residue after the oxidation of the catalyst concentrate contains both individual molybdenum oxide (MoO<sub>3</sub>) and mixtures of double (NiMoO<sub>4</sub>, V<sub>2</sub>MoO<sub>8</sub>, NiV<sub>2</sub>O<sub>6</sub>, Na<sub>0.76</sub>V<sub>6</sub>O<sub>15</sub>) and triple (Fe<sub>4</sub>V<sub>2</sub>Mo<sub>3</sub>O<sub>20</sub>) oxides in the form of alloys. An efficient procedure is the pretreatment of the ash residue with 65% HNO<sub>3</sub>, followed by the treatment of the resulting suspension with a mixture containing 10% NH<sub>4</sub>OH and 5% (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>. In so doing, up to 88–90% of Мо compounds are extracted into the resulting catalyst precursor solution.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 10","pages":"1194 - 1201"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124080073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A procedure for regenerating the hydroconversion catalyst precursor was studied. The procedure involves separation of the catalyst concentrate from the hydrogenizate vacuum residue by filtration, heat treatment of the concentrate to obtain the ash residue, and leaching of compounds of Mo and other metals from the ash residue with aqueous ammonia and nitric acid. As shown by X-ray diffraction analysis, the ash residue after the oxidation of the catalyst concentrate contains both individual molybdenum oxide (MoO3) and mixtures of double (NiMoO4, V2MoO8, NiV2O6, Na0.76V6O15) and triple (Fe4V2Mo3O20) oxides in the form of alloys. An efficient procedure is the pretreatment of the ash residue with 65% HNO3, followed by the treatment of the resulting suspension with a mixture containing 10% NH4OH and 5% (NH4)2CO3. In so doing, up to 88–90% of Мо compounds are extracted into the resulting catalyst precursor solution.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.