Kh. M. Kadiev, A. E. Batov, L. A. Zekel’, N. A. Kubrin, M. Ya. Visaliev, A. U. Dandaev
{"title":"Promoting Effect of Cobalt on the Catalytic Properties of Molybdenum Disulfide Nanoparticle Suspensions","authors":"Kh. M. Kadiev, A. E. Batov, L. A. Zekel’, N. A. Kubrin, M. Ya. Visaliev, A. U. Dandaev","doi":"10.1134/S0965544124080085","DOIUrl":null,"url":null,"abstract":"<p>The catalytic activity of suspensions of cobalt-promoted molybdenum disulfide particles in hydroconversion of the petroleum vacuum residue was studied. Catalyst particle suspensions were prepared from inverse emulsions of aqueous solutions of the precursors (ammonium paramolybdate, cobalt nitrate or acetate) directly in the feed (<i>in situ</i>). Two procedures were used for preparing the promoted catalyst: consecutive or simultaneous addition of the precursors to the dispersion medium. The toluene-insoluble particles (TIPs) containing the spent catalyst had the size from 380 to 410 nm and contained the MoS<sub>2</sub>, МоО<sub>3</sub>, and Co<sub>9</sub>S<sub>8</sub> crystalline phases. The cobalt-promoted dispersed catalyst exhibits the maximal activity in hydrodesulfurization and hydrogenation at the cobalt content of 33 at. %. The effect observed is due to the formation of a variable-composition Мо–Со–S phase, which cannot be identified by X-ray diffraction, on the surface of MoS<sub>2</sub> particles. A further increase in the promoter concentration leads to blocking of the MoS<sub>2</sub> particle surface with Co<sub>9</sub>S<sub>8</sub> crystals, which, in turn, leads to a decrease in the catalyst activity in hydrodesulfurization and hydrogenation of high-molecular-mass feed components, to an increase in coking, and to a decrease in the fraction of paraffin–naphthene hydrocarbons in the hydrogenation product.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 10","pages":"1224 - 1231"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124080085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic activity of suspensions of cobalt-promoted molybdenum disulfide particles in hydroconversion of the petroleum vacuum residue was studied. Catalyst particle suspensions were prepared from inverse emulsions of aqueous solutions of the precursors (ammonium paramolybdate, cobalt nitrate or acetate) directly in the feed (in situ). Two procedures were used for preparing the promoted catalyst: consecutive or simultaneous addition of the precursors to the dispersion medium. The toluene-insoluble particles (TIPs) containing the spent catalyst had the size from 380 to 410 nm and contained the MoS2, МоО3, and Co9S8 crystalline phases. The cobalt-promoted dispersed catalyst exhibits the maximal activity in hydrodesulfurization and hydrogenation at the cobalt content of 33 at. %. The effect observed is due to the formation of a variable-composition Мо–Со–S phase, which cannot be identified by X-ray diffraction, on the surface of MoS2 particles. A further increase in the promoter concentration leads to blocking of the MoS2 particle surface with Co9S8 crystals, which, in turn, leads to a decrease in the catalyst activity in hydrodesulfurization and hydrogenation of high-molecular-mass feed components, to an increase in coking, and to a decrease in the fraction of paraffin–naphthene hydrocarbons in the hydrogenation product.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.