Development of a Shoelace Tensile Testing System and Investigation into the Effects of Different Running Speeds on Shoelace Tensile Variation

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-11-18 DOI:10.1007/s42235-024-00612-5
Shutao Wei, Xinyu Guo, Shaocong Zhao, Biao Yan, Lingjun Li, Jiahao Pan, Li Li
{"title":"Development of a Shoelace Tensile Testing System and Investigation into the Effects of Different Running Speeds on Shoelace Tensile Variation","authors":"Shutao Wei,&nbsp;Xinyu Guo,&nbsp;Shaocong Zhao,&nbsp;Biao Yan,&nbsp;Lingjun Li,&nbsp;Jiahao Pan,&nbsp;Li Li","doi":"10.1007/s42235-024-00612-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system. The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running. Mechanical tests were conducted using 16 weights, and various statistical analyses, including linear regression, Bland-Altman plots, coefficient of variation, and intraclass correlation coefficient, were performed to assess the system’s validity. Fifteen male amateur runners participated in the study, and three conditions (loose, comfortable, and tight) were measured during an upright stance. The system utilized VICON motion systems, a Kistler force plate, and a Photoelectric gate speed measurement system. Results showed a linear relationship between voltage and load at the three sensors (R2 ≥ 0.9997). Bland-Altman plots demonstrated 95% prediction intervals within ± 1.96SD from zero for all sensors. The average coefficient of variation for each sensor was less than 0.38%. Intraclass correlation coefficient values were larger than 0.999 (<i>p</i>&lt;0.0001) for each sensor. The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight. The rear shoelace had the highest tension force. The study also found that shoelace tension varied throughout the gait cycle during running. Overall, this research provides a novel and validated method for measuring shoelace tensile stress, which has implications for developing automatic shoelace fastening systems.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 1","pages":"214 - 225"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-024-00612-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00612-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system. The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running. Mechanical tests were conducted using 16 weights, and various statistical analyses, including linear regression, Bland-Altman plots, coefficient of variation, and intraclass correlation coefficient, were performed to assess the system’s validity. Fifteen male amateur runners participated in the study, and three conditions (loose, comfortable, and tight) were measured during an upright stance. The system utilized VICON motion systems, a Kistler force plate, and a Photoelectric gate speed measurement system. Results showed a linear relationship between voltage and load at the three sensors (R2 ≥ 0.9997). Bland-Altman plots demonstrated 95% prediction intervals within ± 1.96SD from zero for all sensors. The average coefficient of variation for each sensor was less than 0.38%. Intraclass correlation coefficient values were larger than 0.999 (p<0.0001) for each sensor. The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight. The rear shoelace had the highest tension force. The study also found that shoelace tension varied throughout the gait cycle during running. Overall, this research provides a novel and validated method for measuring shoelace tensile stress, which has implications for developing automatic shoelace fastening systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather A Spinal Bistable Oscillator for Autonomous Actuation and Tunable Frequency on Crawling Robot Failure Analysis of Composite Pre-tightened Multi-hierarchy Tooth Joint Based on Suture Structure Topological Structure Design and Obstacle-climbing Capability Analysis of a Lizard-inspired Torso-leg-foot Biomimetic Robot Erratum To: Gravity-Assisted Takeoff of Bird-Inspired Flapping-Wing Air Vehicle Using Cliff-Drop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1