Exploring of SnS/Nb4C3(GQDs) as electrode materials for energy storage devices performance evaluation and development opportunities and hydrogen evolution reactions

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2025-01-25 DOI:10.1140/epjp/s13360-025-06027-3
Muhammad Ashraf, Soumaya Gouadria, Fatma Alharbi, M. Waqas Iqbal, Muhammad Arslan Sunny, Haseebul Hassan, N. A. Ismayilova, Hussein Alrobei, Yazen M. Alawaideh, Ehtisham Umar
{"title":"Exploring of SnS/Nb4C3(GQDs) as electrode materials for energy storage devices performance evaluation and development opportunities and hydrogen evolution reactions","authors":"Muhammad Ashraf,&nbsp;Soumaya Gouadria,&nbsp;Fatma Alharbi,&nbsp;M. Waqas Iqbal,&nbsp;Muhammad Arslan Sunny,&nbsp;Haseebul Hassan,&nbsp;N. A. Ismayilova,&nbsp;Hussein Alrobei,&nbsp;Yazen M. Alawaideh,&nbsp;Ehtisham Umar","doi":"10.1140/epjp/s13360-025-06027-3","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the increasing need for energy, supercapacitors developed to store an additional energy level and exhibit superior efficiency in accumulating energy compared to traditional batteries that undergo several charge–discharge cycles. Transition metal carbides/nitrides, known as MXenes (Nb<sub>4</sub>C<sub>3</sub> MXene), have been the primary subject of advanced research by scientists in energy storage. MXenes, a promising class of 2D materials, offer a unique combination of high conductivity, hydrophilicity, tunable surface chemistry, mechanical resilience, and outstanding electrochemical properties, making them ideal candidates for electrode applications. The recently developed pseudocapacitive material optimizes electrochemical energy storage through its abundant interlayer ion diffusion channels and ion storage sites. Moreover, the MXene has some low conductivity issues; to overcome these issues, the Nb<sub>4</sub>C<sub>3</sub> MXene structure was decorated with Tin monosulfide (SnS). Furthermore, the GQDs were introduced as 6 wt.% dopants to improve the additional conductivity level. The alterations above lead to enhanced porosity, surface area, density, particle structure, shape, and size. These features substantially contribute to improving the electrochemical process (energy storage and hydrogen evaluation reaction). The resulting SnS/Nb<sub>3</sub>C<sub>4</sub>(GQDs)-fabricated electrode displayed an excellent specific capacity of 300 C/g and maintained significant charge–discharge cycle stability; capacity retention and coulombic efficiency are 95.52 and 98.61% over 12,000 cycles. The resulting symmetric device achieved a high E<sub>d</sub> of 68.2 Wh/kg and Pd of 1315 W/kg at a current density of 2 A/g. Moreover, the SnS/Nb<sub>3</sub>C<sub>4</sub>(GQDs) electrode demonstrated a significantly lower HER overpotential of 88.7 mV and Tafel slope values of 83.7 mV/dec. The proposed approach offers a hydrothermal method to combine electrochemically active metal sulfide-based and 2D nanostructured materials, enhancing their energy storage and conversion performance. After the stability test, we have performed the CV, GCD and EIS analyses which show the optimal performance with minor change (Fig. S1).</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06027-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the increasing need for energy, supercapacitors developed to store an additional energy level and exhibit superior efficiency in accumulating energy compared to traditional batteries that undergo several charge–discharge cycles. Transition metal carbides/nitrides, known as MXenes (Nb4C3 MXene), have been the primary subject of advanced research by scientists in energy storage. MXenes, a promising class of 2D materials, offer a unique combination of high conductivity, hydrophilicity, tunable surface chemistry, mechanical resilience, and outstanding electrochemical properties, making them ideal candidates for electrode applications. The recently developed pseudocapacitive material optimizes electrochemical energy storage through its abundant interlayer ion diffusion channels and ion storage sites. Moreover, the MXene has some low conductivity issues; to overcome these issues, the Nb4C3 MXene structure was decorated with Tin monosulfide (SnS). Furthermore, the GQDs were introduced as 6 wt.% dopants to improve the additional conductivity level. The alterations above lead to enhanced porosity, surface area, density, particle structure, shape, and size. These features substantially contribute to improving the electrochemical process (energy storage and hydrogen evaluation reaction). The resulting SnS/Nb3C4(GQDs)-fabricated electrode displayed an excellent specific capacity of 300 C/g and maintained significant charge–discharge cycle stability; capacity retention and coulombic efficiency are 95.52 and 98.61% over 12,000 cycles. The resulting symmetric device achieved a high Ed of 68.2 Wh/kg and Pd of 1315 W/kg at a current density of 2 A/g. Moreover, the SnS/Nb3C4(GQDs) electrode demonstrated a significantly lower HER overpotential of 88.7 mV and Tafel slope values of 83.7 mV/dec. The proposed approach offers a hydrothermal method to combine electrochemically active metal sulfide-based and 2D nanostructured materials, enhancing their energy storage and conversion performance. After the stability test, we have performed the CV, GCD and EIS analyses which show the optimal performance with minor change (Fig. S1).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
Angular momentum dependence of nuclear decay of radon isotopes by emission of \(^{14}\)C nuclei and branching ratio relative to \(\alpha \)-decay Study of structures, electronic and spectral properties of anionic AuMgn− (n = 2–12) clusters Superior monogamy and polygamy relations and estimates of concurrence Charged particle multiplicity fluctuation in \(A-A\) collisions at RHIC and LHC energies using Angantyr model Analysis for 3D thermal conducting micropolar nanofluid via artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1