Nanoscale selenium oxide is a significant substance because of its extensive use in health, manufacturing, and electronics. The present study involves the manufacture of selenium oxide nanoparticles using Syzygium Aromaticum flower plant extract as a reducing agent and employing cold plasma technology to enhance the nanosynthesis process. An investigation was conducted to analyze the impact of various synthesis circumstances on the characteristics of the resultant particles, including particle size, size distribution, and form. Scanning electron microscopy and ultraviolet–visible spectroscopy have been used to investigate the physicochemical characteristics of the nanoparticles produced. The findings demonstrated that using clove flower extract as an eco-friendly and renewable substance in the synthesis procedure enhanced the characteristics of nano selenium oxide, thereby presenting a viable substitute for conventional chemical-based approaches. The cold plasma technique has shown efficacy in precisely regulating particle size and dispersion. The work highlights the significance of using natural resources with contemporary technologies in synthesizing nanomaterials. It paves the way for further investigations into using plant extracts in nanotechnology applications.
Selenium oxide nanoparticles by low-temperature plasma technique