Heat transfer analysis of a fully wetted inclined moving fin with temperature-dependent internal heat generation using DTM-Pade approximant and machine learning algorithms

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pramana Pub Date : 2025-01-25 DOI:10.1007/s12043-024-02880-6
J Komathi, N Magesh, K Venkadeshwaran, K Chandan, R S Varun Kumar, Amal Abdulrahman
{"title":"Heat transfer analysis of a fully wetted inclined moving fin with temperature-dependent internal heat generation using DTM-Pade approximant and machine learning algorithms","authors":"J Komathi,&nbsp;N Magesh,&nbsp;K Venkadeshwaran,&nbsp;K Chandan,&nbsp;R S Varun Kumar,&nbsp;Amal Abdulrahman","doi":"10.1007/s12043-024-02880-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the thermal properties of a longitudinally inclined moving porous fin with varying internal heat generation. The approach takes into account the combined influence of natural convection, radiation, and the wet condition while modelling the fin’s energy equation. Using dimensionless terms, the governing energy balance equation is converted into an ordinary differential equation (ODE), which is then solved using the Differential transform method (DTM) and Pade approximant. The machine learning (ML) algorithms is also implemented for detecting temperature fluctuations in wetted fins. The ability of stacking ensemble ML model is employed to strengthen the reliability and accuracy of forecasts, which demonstratrates the improved regression predictions with absolute error rates ranging at 10<sup>−6</sup>. The coefficient of regression of 1 indicates the best fit for the data signifying efficient ML prediction. The graphical representations demonstrate how thermal factors influence temperature dispersion. The analysis reveals that the fin’s temperature rises with increasing ambient temperature, nondimensional internal heat generation, generation number, power exponent, and Peclet number. However, under these conditions the temperature gradient reduces. Furthermore, greater values of the convective, radiative, wet porous, and inclination angle parameters result in lower fin temperatures, which aids in cooling while increasing the temperature gradient.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02880-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermal properties of a longitudinally inclined moving porous fin with varying internal heat generation. The approach takes into account the combined influence of natural convection, radiation, and the wet condition while modelling the fin’s energy equation. Using dimensionless terms, the governing energy balance equation is converted into an ordinary differential equation (ODE), which is then solved using the Differential transform method (DTM) and Pade approximant. The machine learning (ML) algorithms is also implemented for detecting temperature fluctuations in wetted fins. The ability of stacking ensemble ML model is employed to strengthen the reliability and accuracy of forecasts, which demonstratrates the improved regression predictions with absolute error rates ranging at 10−6. The coefficient of regression of 1 indicates the best fit for the data signifying efficient ML prediction. The graphical representations demonstrate how thermal factors influence temperature dispersion. The analysis reveals that the fin’s temperature rises with increasing ambient temperature, nondimensional internal heat generation, generation number, power exponent, and Peclet number. However, under these conditions the temperature gradient reduces. Furthermore, greater values of the convective, radiative, wet porous, and inclination angle parameters result in lower fin temperatures, which aids in cooling while increasing the temperature gradient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
期刊最新文献
Enhanced THz emission from photoconductive antennas by integrating photonic structures on a semi-insulating GaAs substrate Observed trends in FRB population and bi-modality in the luminosity density distribution Numerical analysis for GEM signal and time resolution Graphene is neither relativistic nor non-relativistic: thermodynamics aspects Phase-space distributions in information theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1