F. Casas, A. Escorihuela-Tomàs, P. A. Moreno Casares
{"title":"Approximating exponentials of commutators by optimized product formulas","authors":"F. Casas, A. Escorihuela-Tomàs, P. A. Moreno Casares","doi":"10.1007/s11128-025-04659-z","DOIUrl":null,"url":null,"abstract":"<div><p>Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3–6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04659-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04659-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3–6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.