Approximating exponentials of commutators by optimized product formulas

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-01-31 DOI:10.1007/s11128-025-04659-z
F. Casas, A. Escorihuela-Tomàs, P. A. Moreno Casares
{"title":"Approximating exponentials of commutators by optimized product formulas","authors":"F. Casas,&nbsp;A. Escorihuela-Tomàs,&nbsp;P. A. Moreno Casares","doi":"10.1007/s11128-025-04659-z","DOIUrl":null,"url":null,"abstract":"<div><p>Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3–6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04659-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04659-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3–6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
Hamiltonians that realize perfect quantum state transfer and early state exclusion How decoherence affects the security of BB84 quantum key distribution protocol Cyclic codes over a semi-local ring and their applications to QEC and EAQEC codes Approximating exponentials of commutators by optimized product formulas Investigating and mitigating barren plateaus in variational quantum circuits: a survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1