Vitali Grinberg, Victor Emets, Alexey Shapagin, Aleksey Averin, Andrei Shiryaev
{"title":"Effect of the length of TiO2 nanotubes on the photoelectrochemical oxidation of phenylacetic acid anions","authors":"Vitali Grinberg, Victor Emets, Alexey Shapagin, Aleksey Averin, Andrei Shiryaev","doi":"10.1007/s10008-024-06090-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline TiO<sub>2</sub> nanotube electrodes were fabricated by electrochemically anodizing the titanium in the electrolyte with an ethylene glycol with addition of 0.5% by weight NH<sub>4</sub>F and amount of water (2% w/w). Structural properties of the obtained coatings have been investigated by scanning electron microscopy and Raman and XRD spectroscopy. When illuminated by a sunlight simulator, these electrodes demonstrate high activity in photoelectrochemical degradation of anions of phenylacetic acid from aqueous solutions of 0.1 M Na<sub>2</sub>SO<sub>4</sub>. Results of intensity-modulated photocurrent spectroscopy show that the photoelectrocatalysis efficiency is explained by suppression of the electron–hole pair recombination and increase in the rate of photo-induced charge transfer. Thus, nanotubes from TiO<sub>2</sub> can be considered as effective photoanodes.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"629 - 638"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06090-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocrystalline TiO2 nanotube electrodes were fabricated by electrochemically anodizing the titanium in the electrolyte with an ethylene glycol with addition of 0.5% by weight NH4F and amount of water (2% w/w). Structural properties of the obtained coatings have been investigated by scanning electron microscopy and Raman and XRD spectroscopy. When illuminated by a sunlight simulator, these electrodes demonstrate high activity in photoelectrochemical degradation of anions of phenylacetic acid from aqueous solutions of 0.1 M Na2SO4. Results of intensity-modulated photocurrent spectroscopy show that the photoelectrocatalysis efficiency is explained by suppression of the electron–hole pair recombination and increase in the rate of photo-induced charge transfer. Thus, nanotubes from TiO2 can be considered as effective photoanodes.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.