{"title":"High-Temperature Oxidation Behavior of Pt-10Rh-Zr(Y) Alloys and its Influence on their Mechanical Properties","authors":"Changyi Hu, Yan Wei, Qianqi Wei, Xiangxing Xiao, Xian Wang, Xuehang Wang, Junmei Guo","doi":"10.1007/s11085-025-10327-5","DOIUrl":null,"url":null,"abstract":"<div><p>In most cases, platinum-based alloys are mainly used in high-temperature oxidation environments, and mastering their oxidation behavior and the impact of oxidation on performance is crucial. Two new platinum-based high-temperature alloys, Pt-10Rh-0.5Zr and Pt-10Rh-0.5Zr-0.2Y, were designed and prepared in this study. The research focuses on the high-temperature oxidation behavior of the alloys in air and the influence of oxidation on the room temperature mechanical properties of the alloys. The results show that the relationship between oxidation weight loss and temperature of these two platinum-based alloys conforms to the Arrhenius equation within the temperature range of 1400–1600 ℃, and the oxidation resistance of Pt-10Rh-0.5Zr-0.2Y alloy is better than that of Pt-10Rh.0.5Zr alloy. Examination of the surface and fracture morphology of these oxidized platinum-based alloys revealed that zirconium and yttrium oxide particles, such as ZrO<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub>, with different morphologies and structures were formed. The study also found that adding a small amount of zirconium and yttrium can significantly improve the room temperature ultimate tensile strength of Pt-10Rh alloy. However, after 20 h of high-temperature oxidation treatment at 1400 and 1500 °C, the tensile strength and plasticity at room temperature of both alloys showed a significant downward trend. Especially, the room temperature plasticity of Pt-10Rh-0.5Zr-0.2Y alloy decreased by more than 80% and exhibited a brittle fracture mode. Our research will contribute to the design and development of new high-temperature platinum-based alloys.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"102 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-025-10327-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In most cases, platinum-based alloys are mainly used in high-temperature oxidation environments, and mastering their oxidation behavior and the impact of oxidation on performance is crucial. Two new platinum-based high-temperature alloys, Pt-10Rh-0.5Zr and Pt-10Rh-0.5Zr-0.2Y, were designed and prepared in this study. The research focuses on the high-temperature oxidation behavior of the alloys in air and the influence of oxidation on the room temperature mechanical properties of the alloys. The results show that the relationship between oxidation weight loss and temperature of these two platinum-based alloys conforms to the Arrhenius equation within the temperature range of 1400–1600 ℃, and the oxidation resistance of Pt-10Rh-0.5Zr-0.2Y alloy is better than that of Pt-10Rh.0.5Zr alloy. Examination of the surface and fracture morphology of these oxidized platinum-based alloys revealed that zirconium and yttrium oxide particles, such as ZrO2 and Y2O3, with different morphologies and structures were formed. The study also found that adding a small amount of zirconium and yttrium can significantly improve the room temperature ultimate tensile strength of Pt-10Rh alloy. However, after 20 h of high-temperature oxidation treatment at 1400 and 1500 °C, the tensile strength and plasticity at room temperature of both alloys showed a significant downward trend. Especially, the room temperature plasticity of Pt-10Rh-0.5Zr-0.2Y alloy decreased by more than 80% and exhibited a brittle fracture mode. Our research will contribute to the design and development of new high-temperature platinum-based alloys.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.