{"title":"Synthesis and characterization of cerium monazite phosphate glass-ceramic for immobilization of nuclear waste salt","authors":"Xueyang Liu, Xilei Duan, Lin Li, Qiang Zhang, Zhenghua Qian, Yanbo Qiao","doi":"10.1111/ijac.14940","DOIUrl":null,"url":null,"abstract":"<p>A phosphate glass-ceramic wasteform incorporating cerium monazite was synthesized through a two-step solid phase sintering methodology, aimed at immobilizing waste salts derived from the pyrochemical reprocessing of spent nuclear fuel. The initial phase involved the synthesis of cerium monazite powder, employing a stoichiometric mixture of CeF<sub>3</sub> and NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> in a molar ratio of mol(Ce:PO<sub>4</sub>) = 1:1.4, which was subjected to a thermal treatment at 900°C. Subsequently, the glass-ceramic matrix was fabricated by sintering a composite mixture of the synthesized cerium monazite and iron phosphate glass (IPG) powder at a temperature of 1000°C for a duration of 2 h, resulting in a cerium incorporation exceeding 36.5 wt%. Microstructural analysis and structural characterization of the glass-ceramic sample elucidated the presence of monazite crystallites (CePO<sub>4</sub>) with dimensions ranging from .2 to 5.5 µm. The chemical durability of the wasteform was assessed through modified ASTM C1308 tests conducted in deionized water over a period of 28 days, revealing a total elemental leaching rate of 2.58 × 10<sup>−7</sup> g m<sup>−2</sup> min<sup>−1</sup>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14940","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A phosphate glass-ceramic wasteform incorporating cerium monazite was synthesized through a two-step solid phase sintering methodology, aimed at immobilizing waste salts derived from the pyrochemical reprocessing of spent nuclear fuel. The initial phase involved the synthesis of cerium monazite powder, employing a stoichiometric mixture of CeF3 and NH4H2PO4 in a molar ratio of mol(Ce:PO4) = 1:1.4, which was subjected to a thermal treatment at 900°C. Subsequently, the glass-ceramic matrix was fabricated by sintering a composite mixture of the synthesized cerium monazite and iron phosphate glass (IPG) powder at a temperature of 1000°C for a duration of 2 h, resulting in a cerium incorporation exceeding 36.5 wt%. Microstructural analysis and structural characterization of the glass-ceramic sample elucidated the presence of monazite crystallites (CePO4) with dimensions ranging from .2 to 5.5 µm. The chemical durability of the wasteform was assessed through modified ASTM C1308 tests conducted in deionized water over a period of 28 days, revealing a total elemental leaching rate of 2.58 × 10−7 g m−2 min−1.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;