CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL MedComm Pub Date : 2025-02-02 DOI:10.1002/mco2.70078
Xiwei Wang, Zheng Xiang, Yanmei Zhang, Chloe Ran Tu, Chunyu Huang, Yuet Chung, Wenyue Zhang, Manni Wang, Yinping Liu, Wenwei Tu
{"title":"CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma","authors":"Xiwei Wang,&nbsp;Zheng Xiang,&nbsp;Yanmei Zhang,&nbsp;Chloe Ran Tu,&nbsp;Chunyu Huang,&nbsp;Yuet Chung,&nbsp;Wenyue Zhang,&nbsp;Manni Wang,&nbsp;Yinping Liu,&nbsp;Wenwei Tu","doi":"10.1002/mco2.70078","DOIUrl":null,"url":null,"abstract":"<p>Interleukin (IL)-17-producing γδ-T cells (γδT-17) are a major source of IL-17 within the tumor microenvironment and have been shown to influence tumor development and therapy outcomes in various cancers. However, the role and presence of γδT-17 cells in nasopharyngeal carcinoma (NPC) remain poorly understood. It is also unclear how these cells might affect radiotherapy, the primary treatment for NPC patients. In this study, we discovered that NPC tumor tissues were rich in γδT-17 cells. Exosomes released from NPC cells (NPC-Exos) could direct γδ-T cells to differentiate into γδT-17 cells. These NPC-Exos-induced γδT-17 cells were found to enhance radioresistance in NPC, both in vitro and in vivo. Blocking IL-17 secreted by NPC-Exos-induced γδT-17 cells restored NPC cell sensitivity to radiation and elevated radiation-induced cell death. Mechanistic studies revealed that NPC-Exos not only increased the release of IL-17-promoting cytokines IL-1β, IL-6, and IL-23 from dendritic cells, but also suppressed CD25/IL-2 signaling in γδ-T cells, facilitating γδT-17 differentiation. The suppression of CD25/IL-2 signaling was driven by microRNA-15a (miR-15a) carried by NPC exosomes. Furthermore, miR-15a inhibitors were able to prevent γδT-17 induction by NPC-Exos. Our findings reveal a novel immunoregulatory role of NPC-Exos and offer potential strategies to combat NPC radioresistance.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interleukin (IL)-17-producing γδ-T cells (γδT-17) are a major source of IL-17 within the tumor microenvironment and have been shown to influence tumor development and therapy outcomes in various cancers. However, the role and presence of γδT-17 cells in nasopharyngeal carcinoma (NPC) remain poorly understood. It is also unclear how these cells might affect radiotherapy, the primary treatment for NPC patients. In this study, we discovered that NPC tumor tissues were rich in γδT-17 cells. Exosomes released from NPC cells (NPC-Exos) could direct γδ-T cells to differentiate into γδT-17 cells. These NPC-Exos-induced γδT-17 cells were found to enhance radioresistance in NPC, both in vitro and in vivo. Blocking IL-17 secreted by NPC-Exos-induced γδT-17 cells restored NPC cell sensitivity to radiation and elevated radiation-induced cell death. Mechanistic studies revealed that NPC-Exos not only increased the release of IL-17-promoting cytokines IL-1β, IL-6, and IL-23 from dendritic cells, but also suppressed CD25/IL-2 signaling in γδ-T cells, facilitating γδT-17 differentiation. The suppression of CD25/IL-2 signaling was driven by microRNA-15a (miR-15a) carried by NPC exosomes. Furthermore, miR-15a inhibitors were able to prevent γδT-17 induction by NPC-Exos. Our findings reveal a novel immunoregulatory role of NPC-Exos and offer potential strategies to combat NPC radioresistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Circular RNAs in cancer CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma Antimicrobial peptide DP7 alleviates dextran sulfate sodium (DSS)-induced colitis via modifying gut microbiota and regulating intestinal barrier function Outer membrane vesicle contributes to the Pseudomonas aeruginosa resistance to antimicrobial peptides in the acidic airway of bronchiectasis patients Dimethyl fumarate alleviate hepatic ischemia–reperfusion injury through suppressing cGAS-STING signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1