{"title":"Run-Away Transition to Turbulent Strong-Field Dynamo","authors":"A. Guseva, L. Petitdemange, S. M. Tobias","doi":"10.1029/2024JE008496","DOIUrl":null,"url":null,"abstract":"<p>Planets and stars are able to generate coherent large-scale magnetic fields by helical convective motions in their interiors. This process, known as hydromagnetic dynamo, involves nonlinear interaction between the flow and the magnetic field. Nonlinearity facilitates existence of bi-stable dynamo branches: a weak field branch where the magnetic field is not strong enough to enter into the leading order force balance in the momentum equation at large flow scales, and a strong field branch where the field enters into this balance. The transition between the two with enhancement of convection can be either subcritical or supercritical, depending on the strength of magnetic induction. In both cases, it is accompanied by topological changes in velocity field across the system; however, it is yet unclear how these changes are produced. In this work, we analyze transitions between the weak and strong dynamo regimes using a data-driven approach, separating different physical effects induced by dynamically active flow scales. Using Dynamic Mode Decomposition, we decompose the dynamo data from direct numerical simulations into different components (modes), identify the ones relevant for transition, and estimate relative magnitudes of their contributions Lorentz force and induction term. Our results suggest that subcritical transition to a strong dynamo is facilitated by a subharmonic instability, allowing for a more efficient mode of convection, and provide a modal basis for reduced-order models of this transition.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008496","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Planets and stars are able to generate coherent large-scale magnetic fields by helical convective motions in their interiors. This process, known as hydromagnetic dynamo, involves nonlinear interaction between the flow and the magnetic field. Nonlinearity facilitates existence of bi-stable dynamo branches: a weak field branch where the magnetic field is not strong enough to enter into the leading order force balance in the momentum equation at large flow scales, and a strong field branch where the field enters into this balance. The transition between the two with enhancement of convection can be either subcritical or supercritical, depending on the strength of magnetic induction. In both cases, it is accompanied by topological changes in velocity field across the system; however, it is yet unclear how these changes are produced. In this work, we analyze transitions between the weak and strong dynamo regimes using a data-driven approach, separating different physical effects induced by dynamically active flow scales. Using Dynamic Mode Decomposition, we decompose the dynamo data from direct numerical simulations into different components (modes), identify the ones relevant for transition, and estimate relative magnitudes of their contributions Lorentz force and induction term. Our results suggest that subcritical transition to a strong dynamo is facilitated by a subharmonic instability, allowing for a more efficient mode of convection, and provide a modal basis for reduced-order models of this transition.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.