Dmytro Breslavsky, Pavlo Palamarchuk, Oksana Tatarinova, Holm Altenbach, Francesco Pellicano
{"title":"The Influence of a Sudden Impact Loading on the Creep, Damage, and Fracture of Beams Made From Functionally Graded Materials","authors":"Dmytro Breslavsky, Pavlo Palamarchuk, Oksana Tatarinova, Holm Altenbach, Francesco Pellicano","doi":"10.1111/ffe.14528","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>An approach to the analysis of the influence of impact loading on creep, accumulation of hidden damage and fracture of structural elements made of functionally graded materials (FGM) is proposed. The approach is based on the analysis of additional damage caused by the impact loading and the stress redistribution caused by it. For the numerical modeling, finite element analysis was applied using algorithms for determining the size and direction of motion of macroscopic defects by means of the analysis of the time-varying damage field. The fracture after an impact on a beam made from FGM is considered. The nature of fracture of a beam made of two-layer metal-ceramic material was studied. The advantages of using FGM to ensure a better long-term response of a structural element to a non-destructive impact loading are shown. An approach to determine the time until the complete fracture of the FGM beam by the simultaneous description of the motion of two cracks is proposed.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"931-941"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14528","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An approach to the analysis of the influence of impact loading on creep, accumulation of hidden damage and fracture of structural elements made of functionally graded materials (FGM) is proposed. The approach is based on the analysis of additional damage caused by the impact loading and the stress redistribution caused by it. For the numerical modeling, finite element analysis was applied using algorithms for determining the size and direction of motion of macroscopic defects by means of the analysis of the time-varying damage field. The fracture after an impact on a beam made from FGM is considered. The nature of fracture of a beam made of two-layer metal-ceramic material was studied. The advantages of using FGM to ensure a better long-term response of a structural element to a non-destructive impact loading are shown. An approach to determine the time until the complete fracture of the FGM beam by the simultaneous description of the motion of two cracks is proposed.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.