{"title":"The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel","authors":"Yongjin Wu, Chaolei Zhang, Shuaijun Dong, Wenjun Wang, Xinping Mao, Shuize Wang, Guilin Wu, Junheng Gao, Honghui Wu, Haitao Zhao","doi":"10.1111/ffe.14554","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The high-cycle tension–compression fatigue property of 1.0%C–1.5Cr% bearing steel with niobium (Nb) content of 180 and 800 ppm was investigated. The results indicated that the fatigue limit for both Nb-free and 0.018% Nb steel remained at 900 MPa, while 0.080% Nb steel increased to 950 MPa. Furthermore, Nb played a dual role in the high-cycle fatigue limit. First, it refined the undissolved carbides. In 0.080% Nb steel, the dissolution of rod-like carbides resulted in a 31% reduction in the size of undissolved carbides compared with Nb-free steel, and the roundness was increased with carbide aspect ratio decreasing from 1.37 to 1.16. Second, the stress field generated by the tip-shaped TiN crack source in 0.018% Nb steel exceeded that produced by the spherical oxide inclusions in Nb-free steel and the ellipsoidal NbC in 0.080% Nb steel, which negatively impacted the fatigue properties of the steel.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1301-1314"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high-cycle tension–compression fatigue property of 1.0%C–1.5Cr% bearing steel with niobium (Nb) content of 180 and 800 ppm was investigated. The results indicated that the fatigue limit for both Nb-free and 0.018% Nb steel remained at 900 MPa, while 0.080% Nb steel increased to 950 MPa. Furthermore, Nb played a dual role in the high-cycle fatigue limit. First, it refined the undissolved carbides. In 0.080% Nb steel, the dissolution of rod-like carbides resulted in a 31% reduction in the size of undissolved carbides compared with Nb-free steel, and the roundness was increased with carbide aspect ratio decreasing from 1.37 to 1.16. Second, the stress field generated by the tip-shaped TiN crack source in 0.018% Nb steel exceeded that produced by the spherical oxide inclusions in Nb-free steel and the ellipsoidal NbC in 0.080% Nb steel, which negatively impacted the fatigue properties of the steel.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.