Insights on proton-conducting ceramic electrochemical cell fabrication

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of the American Ceramic Society Pub Date : 2025-01-02 DOI:10.1111/jace.20321
Charlie Meisel, Jake D. Huang, You-Dong Kim, Sophia Stockburger, Ryan O'Hayre, Neal P. Sullivan
{"title":"Insights on proton-conducting ceramic electrochemical cell fabrication","authors":"Charlie Meisel,&nbsp;Jake D. Huang,&nbsp;You-Dong Kim,&nbsp;Sophia Stockburger,&nbsp;Ryan O'Hayre,&nbsp;Neal P. Sullivan","doi":"10.1111/jace.20321","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the key factors influencing sintering behavior and grain growth in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>BaCe</mi>\n <mn>0.4</mn>\n </msub>\n <msub>\n <mi>Zr</mi>\n <mn>0.4</mn>\n </msub>\n <msub>\n <mi>Y</mi>\n <mn>0.1</mn>\n </msub>\n <msub>\n <mi>Yb</mi>\n <mn>0.1</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mrow>\n <mn>3</mn>\n <mo>−</mo>\n <mi>δ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\mathrm{BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-\\delta }}$</annotation>\n </semantics></math> (BCZYYb4411)–NiO negatrodes and BCZYYb electrolytes for protonic ceramic electrochemical cells (PCECs). Elastic net machine learning models are applied to a dataset of nearly 200 individual PCEC button cells fabricated over the course of more than 3 years to identify the key processing parameters that significantly affect negatrode shrinkage and electrolyte grain growth. The shrinkage rate of the BCZYYb4411–NiO negatrode is primarily governed by the solid-state sintering behavior. Higher sintering temperatures, longer dwell times, and smaller NiO particle size are the primary determinants that lead to greater shrinkage. New or lightly-used setters and more compact negatrodes are also found to increase shrinkage. Electrolyte grain growth is chiefly controlled by the liquid-phase sintering of the BCZYYb phase. Increased cerium content on the B-site leads to the largest enhancement in grain size, followed by increasing maximum sintering temperature. We find that the parameters used to tune the spray deposition of the electrolyte layer are also critical, with wetter and more uniform sprays promoting grain enlargement. Finally, we find that the sintering environment (e.g. presence/absence of sintering neighbors or sacrificial powders and the ambient humidity level) also substantially impacts both shrinkage and grain growth. This work comprehensively analyzes data from nearly 200 PCECs without “success bias,” meaning that poor performers and fabrication failures were included in the analysis. By doing so, the study provides valuable insight into the critical factors controlling shrinkage and grain growth in BCZYYb-based PCECs. The findings offer foundational guidance for processing optimization that could lead to better repeatability, increased yields, and higher performance.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20321","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the key factors influencing sintering behavior and grain growth in BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3 δ $\mathrm{BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-\delta }}$ (BCZYYb4411)–NiO negatrodes and BCZYYb electrolytes for protonic ceramic electrochemical cells (PCECs). Elastic net machine learning models are applied to a dataset of nearly 200 individual PCEC button cells fabricated over the course of more than 3 years to identify the key processing parameters that significantly affect negatrode shrinkage and electrolyte grain growth. The shrinkage rate of the BCZYYb4411–NiO negatrode is primarily governed by the solid-state sintering behavior. Higher sintering temperatures, longer dwell times, and smaller NiO particle size are the primary determinants that lead to greater shrinkage. New or lightly-used setters and more compact negatrodes are also found to increase shrinkage. Electrolyte grain growth is chiefly controlled by the liquid-phase sintering of the BCZYYb phase. Increased cerium content on the B-site leads to the largest enhancement in grain size, followed by increasing maximum sintering temperature. We find that the parameters used to tune the spray deposition of the electrolyte layer are also critical, with wetter and more uniform sprays promoting grain enlargement. Finally, we find that the sintering environment (e.g. presence/absence of sintering neighbors or sacrificial powders and the ambient humidity level) also substantially impacts both shrinkage and grain growth. This work comprehensively analyzes data from nearly 200 PCECs without “success bias,” meaning that poor performers and fabrication failures were included in the analysis. By doing so, the study provides valuable insight into the critical factors controlling shrinkage and grain growth in BCZYYb-based PCECs. The findings offer foundational guidance for processing optimization that could lead to better repeatability, increased yields, and higher performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
期刊最新文献
Issue Information Issue Information Enhanced temperature stability and reduced tan δ in B-site modified titanate-based high-entropy perovskite oxides Insights on proton-conducting ceramic electrochemical cell fabrication Impact of enhanced ferroelectric polarization through La doping on photovoltaic properties of BiFeO3 thin films on HOPG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1