J. Hernández-Bernal, A. Spiga, A. Chatain, J. Pla-Garcia, D. Banfield
{"title":"Diurnal and Seasonal Variations of Gravity Waves in the Lower Atmosphere of Mars as Observed by InSight","authors":"J. Hernández-Bernal, A. Spiga, A. Chatain, J. Pla-Garcia, D. Banfield","doi":"10.1029/2024JE008746","DOIUrl":null,"url":null,"abstract":"<p>We investigate Gravity Waves (GWs) in the lower atmosphere of Mars based on pressure timeseries acquired by the InSight lander. We compile a climatology showing that most GW activity detected at the InSight landing site takes place after the sunrise and sunset; they are almost absent during the aphelion season, and more prominent around the equinoxes, with variations during dust events and interannual variations. We find GWs with coherent phases in different sols, and a previously unnoticed coincidence of GW activity with those moments in which the diurnal cycle (of tidal origin) exhibits the fastest increases in absolute pressure. We explore the possibility that some of these GWs might actually be high-order harmonics of thermal tides transiently interfering constructively to produce relevant meteorological patterns, and discuss other interpretations based on wind patterns. The so-called Terminator Waves observed on Earth might also explain some of our observations.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008746","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008746","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate Gravity Waves (GWs) in the lower atmosphere of Mars based on pressure timeseries acquired by the InSight lander. We compile a climatology showing that most GW activity detected at the InSight landing site takes place after the sunrise and sunset; they are almost absent during the aphelion season, and more prominent around the equinoxes, with variations during dust events and interannual variations. We find GWs with coherent phases in different sols, and a previously unnoticed coincidence of GW activity with those moments in which the diurnal cycle (of tidal origin) exhibits the fastest increases in absolute pressure. We explore the possibility that some of these GWs might actually be high-order harmonics of thermal tides transiently interfering constructively to produce relevant meteorological patterns, and discuss other interpretations based on wind patterns. The so-called Terminator Waves observed on Earth might also explain some of our observations.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.