Effect of potassium-waterglass composition on strength development and leaching behavior of geopolymers in different curing conditions

Umberto C. C. S. Siciliano, Ana C. C. Trindade, Flávio de Andrade Silva
{"title":"Effect of potassium-waterglass composition on strength development and leaching behavior of geopolymers in different curing conditions","authors":"Umberto C. C. S. Siciliano,&nbsp;Ana C. C. Trindade,&nbsp;Flávio de Andrade Silva","doi":"10.1002/ces2.10251","DOIUrl":null,"url":null,"abstract":"<p>This study delves into the impact of different potassium-waterglass (K-WG) compositions on the early reaction dynamics and strength evolution in metakaolin-based geopolymers (GP). By maintaining a constant SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of 4, the study explores the influence of varying H<sub>2</sub>O/K<sub>2</sub>O and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratios on GP properties under both dry and saturated curing conditions. Early reaction kinetics are examined using isothermal calorimetry at room temperature (21°C), and pH measurements provide insights into alkali leaching. A strong correlation was found between total heat release and strength gain, as evidenced by ultrasonic cement analyzer (UCA) readings. The study further identifies that increased H<sub>2</sub>O/K<sub>2</sub>O ratios prolong setting times and delay the geopolymerization peaks, while a higher K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratio enhances the geopolymerization process. Vicat tests confirmed the results obtained by calorimetry and UCA: only the GP4 formulation (H<sub>2</sub>O/K<sub>2</sub>O = 8.7 and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3 </sub>= 1.3) hardened in less than 7 days. Additionally, it was found that saturated curing conditions decelerate strength development, with an initial notable decline in compressive strength at 24 h compared with dry curing. However, this difference diminishes to a negligible 7.6% after 3 days. Optimal ratios of H<sub>2</sub>O/K<sub>2</sub>O = 8.7 and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3 </sub>= 1.3 were determined to be critical for achieving reliable strength measurements at 1 day of curing. pH assessments indicated strong water resistance in all GP formulations, with leaching primarily governed by diffusion mechanisms. Specifically, the K-WG composition with SiO<sub>2</sub>/K<sub>2</sub>O = 1.53 and H<sub>2</sub>O/K<sub>2</sub>O = 8.69 showcased minimal leachability. These fundamental findings are crucial for the later design of GP materials that require rapid strength development, especially crucial for applications necessitating cementing under extreme conditions, such as deep-sea drilling, geothermal energy production, and high-temperature industrial processes.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the impact of different potassium-waterglass (K-WG) compositions on the early reaction dynamics and strength evolution in metakaolin-based geopolymers (GP). By maintaining a constant SiO2/Al2O3 ratio of 4, the study explores the influence of varying H2O/K2O and K2O/Al2O3 ratios on GP properties under both dry and saturated curing conditions. Early reaction kinetics are examined using isothermal calorimetry at room temperature (21°C), and pH measurements provide insights into alkali leaching. A strong correlation was found between total heat release and strength gain, as evidenced by ultrasonic cement analyzer (UCA) readings. The study further identifies that increased H2O/K2O ratios prolong setting times and delay the geopolymerization peaks, while a higher K2O/Al2O3 ratio enhances the geopolymerization process. Vicat tests confirmed the results obtained by calorimetry and UCA: only the GP4 formulation (H2O/K2O = 8.7 and K2O/Al2O= 1.3) hardened in less than 7 days. Additionally, it was found that saturated curing conditions decelerate strength development, with an initial notable decline in compressive strength at 24 h compared with dry curing. However, this difference diminishes to a negligible 7.6% after 3 days. Optimal ratios of H2O/K2O = 8.7 and K2O/Al2O= 1.3 were determined to be critical for achieving reliable strength measurements at 1 day of curing. pH assessments indicated strong water resistance in all GP formulations, with leaching primarily governed by diffusion mechanisms. Specifically, the K-WG composition with SiO2/K2O = 1.53 and H2O/K2O = 8.69 showcased minimal leachability. These fundamental findings are crucial for the later design of GP materials that require rapid strength development, especially crucial for applications necessitating cementing under extreme conditions, such as deep-sea drilling, geothermal energy production, and high-temperature industrial processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Rapid and low-temperature synthesis of MoAlB MAB phase by using stress-induced Al-particles Investigating lightweight foamed concrete prepared using selected brands of detergent and cement grades Effect of potassium-waterglass composition on strength development and leaching behavior of geopolymers in different curing conditions Crystallographic characterization of Ag-doping in nanocrystallite hydroxyapatite and evaluation of photocatalytic activity of organic pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1