The Use of Image-Based Data and Abundance Modelling Approaches for Predicting the Location of Vulnerable Marine Ecosystems in the South Pacific Ocean

IF 2 3区 农林科学 Q2 FISHERIES Fisheries Management and Ecology Pub Date : 2024-11-02 DOI:10.1111/fme.12751
Matthew Bennion, Ashley A. Rowden, Owen F. Anderson, David A. Bowden, Malcolm R. Clark, Franziska Althaus, Alan Williams, Shane W. Geange, Jordi Tablada, Fabrice Stephenson
{"title":"The Use of Image-Based Data and Abundance Modelling Approaches for Predicting the Location of Vulnerable Marine Ecosystems in the South Pacific Ocean","authors":"Matthew Bennion,&nbsp;Ashley A. Rowden,&nbsp;Owen F. Anderson,&nbsp;David A. Bowden,&nbsp;Malcolm R. Clark,&nbsp;Franziska Althaus,&nbsp;Alan Williams,&nbsp;Shane W. Geange,&nbsp;Jordi Tablada,&nbsp;Fabrice Stephenson","doi":"10.1111/fme.12751","DOIUrl":null,"url":null,"abstract":"<p>Vulnerable marine ecosystems (VMEs) are typically fragile and slow to recover, thereby making them susceptible to disturbance, including fishing. In the high seas, the United Nations General Assembly (UNGA) requested regional fishery management organisations (RFMOs) to implement measures to prevent significant adverse impacts on VMEs. Here, we predict spatial abundances of 15 taxa, 13 VME indicator taxa, in the South Pacific RFMO (SPRFMO) area. Models used seafloor imagery data, an important advance on previously developed presence-only predictions, to provide information on spatial variation in taxa abundance that is crucial for better inferring likely location of VMEs, rather than just distribution of VME indicator taxa. Abundance models varied in predictive power (mean <i>R</i><sup>2</sup> ranged 0.02–0.40). Uncertainty estimates of model predictions were developed to inform future spatial planning processes for conservation and management of VMEs. Using the VME index concept, abundance model outputs and previously published presence-only model predictions were weighted using vulnerability scores, to explore how modelled outputs could provide spatial estimates of likely VME distribution. Spatial predictions of abundance improved on previous modelling to provide an almost complete suite of abundance models for VME indicator taxa in the western portion of the SPRFMO Convention area. Nevertheless, to improve utility of modelled outputs, we recommend more high-quality seafloor imagery data be gathered within the SPRFMO Convention area to (1) validate abundance models developed here with independent data from the model area, (2) update models, if necessary, (3) link abundance information to ecosystem function and (4) explore validity of the adapted VME index approach used here.</p>","PeriodicalId":50444,"journal":{"name":"Fisheries Management and Ecology","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/fme.12751","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fisheries Management and Ecology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fme.12751","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Vulnerable marine ecosystems (VMEs) are typically fragile and slow to recover, thereby making them susceptible to disturbance, including fishing. In the high seas, the United Nations General Assembly (UNGA) requested regional fishery management organisations (RFMOs) to implement measures to prevent significant adverse impacts on VMEs. Here, we predict spatial abundances of 15 taxa, 13 VME indicator taxa, in the South Pacific RFMO (SPRFMO) area. Models used seafloor imagery data, an important advance on previously developed presence-only predictions, to provide information on spatial variation in taxa abundance that is crucial for better inferring likely location of VMEs, rather than just distribution of VME indicator taxa. Abundance models varied in predictive power (mean R2 ranged 0.02–0.40). Uncertainty estimates of model predictions were developed to inform future spatial planning processes for conservation and management of VMEs. Using the VME index concept, abundance model outputs and previously published presence-only model predictions were weighted using vulnerability scores, to explore how modelled outputs could provide spatial estimates of likely VME distribution. Spatial predictions of abundance improved on previous modelling to provide an almost complete suite of abundance models for VME indicator taxa in the western portion of the SPRFMO Convention area. Nevertheless, to improve utility of modelled outputs, we recommend more high-quality seafloor imagery data be gathered within the SPRFMO Convention area to (1) validate abundance models developed here with independent data from the model area, (2) update models, if necessary, (3) link abundance information to ecosystem function and (4) explore validity of the adapted VME index approach used here.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fisheries Management and Ecology
Fisheries Management and Ecology 农林科学-渔业
CiteScore
3.80
自引率
5.00%
发文量
77
审稿时长
12-24 weeks
期刊介绍: Fisheries Management and Ecology is a journal with an international perspective. It presents papers that cover all aspects of the management, ecology and conservation of inland, estuarine and coastal fisheries. The Journal aims to: foster an understanding of the maintenance, development and management of the conditions under which fish populations and communities thrive, and how they and their habitat can be conserved and enhanced; promote a thorough understanding of the dual nature of fisheries as valuable resources exploited for food, recreational and commercial purposes and as pivotal indicators of aquatic habitat quality and conservation status; help fisheries managers focus upon policy, management, operational, conservation and ecological issues; assist fisheries ecologists become more aware of the needs of managers for information, techniques, tools and concepts; integrate ecological studies with all aspects of management; ensure that the conservation of fisheries and their environments is a recurring theme in fisheries and aquatic management.
期刊最新文献
Issue Information Correction to Tracking Aquatic Animals for Fisheries Management in European Waters Issue Information The Use of Image-Based Data and Abundance Modelling Approaches for Predicting the Location of Vulnerable Marine Ecosystems in the South Pacific Ocean Recreational Fishing in the Neotropical Region: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1