Design, Synthesis, and Anti-Glioma Activity Evaluation of Dehydroabietic Acid Derivatives

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2025-02-03 DOI:10.1002/slct.202404226
Yuanhui Liu, Yifeng Qiu, Ming Li, Ying Liu, Yan Luo, Gong Chen, Lianbao Ye
{"title":"Design, Synthesis, and Anti-Glioma Activity Evaluation of Dehydroabietic Acid Derivatives","authors":"Yuanhui Liu,&nbsp;Yifeng Qiu,&nbsp;Ming Li,&nbsp;Ying Liu,&nbsp;Yan Luo,&nbsp;Gong Chen,&nbsp;Lianbao Ye","doi":"10.1002/slct.202404226","DOIUrl":null,"url":null,"abstract":"<p>Dehydroabietic acid (DHAA) is a common natural product with a broad range of biological activities. In previous research, our group identified a range of dehydroabietic acid derivatives with strong anti-glioma activity. In order to search for better anti-glioma drugs candidates, new chalcone derivatives <b>A1-A10</b> and <b>B1-B10</b> were designed and synthesized in this study. The antiproliferative activity of these derivatives against U87 glioma cells was tested by CCK-8 assay, in which <b>A10</b> has the best <i>IC</i><sub>50</sub> value of 11.39 µM. Scratch and cloning studies further confirmed that <b>A10</b> strongly inhibited the proliferation and colony-forming activity of U87 cells. The antiproliferative activity of <b>A10</b> on U87 cells showed some concentration dependence manner and the pKa values of <b>A10</b> were within the desirable range of anti-gliomas drugs. In addition, molecular docking revealed hydrogen bonding interaction was formed between <b>A10</b> and the target protein. These results suggest that <b>A10</b> may be a promising DHAA-derived lead compound that deserves further strategic optimization in search of the anticancer candidates against glioma.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404226","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dehydroabietic acid (DHAA) is a common natural product with a broad range of biological activities. In previous research, our group identified a range of dehydroabietic acid derivatives with strong anti-glioma activity. In order to search for better anti-glioma drugs candidates, new chalcone derivatives A1-A10 and B1-B10 were designed and synthesized in this study. The antiproliferative activity of these derivatives against U87 glioma cells was tested by CCK-8 assay, in which A10 has the best IC50 value of 11.39 µM. Scratch and cloning studies further confirmed that A10 strongly inhibited the proliferation and colony-forming activity of U87 cells. The antiproliferative activity of A10 on U87 cells showed some concentration dependence manner and the pKa values of A10 were within the desirable range of anti-gliomas drugs. In addition, molecular docking revealed hydrogen bonding interaction was formed between A10 and the target protein. These results suggest that A10 may be a promising DHAA-derived lead compound that deserves further strategic optimization in search of the anticancer candidates against glioma.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
2-Indolinone: An Anticancer Scaffold, Overview of the Studies and Approaches (2017–2024) Theoretical Study on Interaction of Fluorine-Containing Compounds Involving the Fourth Period Metal Elements With N-base: Comparison With Halogen Bonds Green Synthesis of Pachyrhizus erosus-Derived Carbon Aerogels for Adsorption of Oil and Organic Solvents and Investigation of Their Electrochemical Properties Aminocatalytic, Stereoselective Synthesis of Tetrahydrocarbazole Spiropyrazolones via Remote [4 + 2] Annulation of Indole Tethered Enal With Olefinic Pyrazolones Recent Developments in Catalytic CO2-to-Ethanol Conversion Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1