Sajjad Fattaheian-Dehkordi, Jamshid Aghaei, Nima Amjady
{"title":"Decentralized management of unbalanced multi-agent distribution systems: A transactive approach leveraging ADMM framework","authors":"Sajjad Fattaheian-Dehkordi, Jamshid Aghaei, Nima Amjady","doi":"10.1049/gtd2.70009","DOIUrl":null,"url":null,"abstract":"<p>The emergence of multi-agent systems and significant integration of distributed energy sources (DESs) are transforming distribution networks. This necessitates a decentralized management strategy for unbalanced operation in multi-agent distribution systems (MADSs) due to the autonomous nature and potential for unbalanced injection of single-phase DESs. Accordingly, this paper proposes a novel approach for decentralized management of unbalanced operation in MADSs. The approach leverages a customized alternating direction method of multipliers to facilitate decentralized decision-making, while incorporating transactive energy signals aligned with the alternating direction method of multiplier framework to enable independent agent operation. In this scheme, independent agents would optimize their operating costs considering the announced transactive signals, which model the power prices and power loss in the grid. The decentralized structure enables agents to apply stochastic and condition value at risk methods to address the uncertainty and associated risk in scheduling resources. Furthermore, without violating the privacy concerns of agents, the developed transactive-based scheme facilitates minimizing the asymmetrical condition, caused by the unbalanced integration of DESs, in the power request at the connection point of MADSs and transmission networks. Finally, the proposed methodology is simulated on 37-bus and 123-bus test-systems to study its effectiveness in managing the MADSs with unbalanced integration of DESs.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of multi-agent systems and significant integration of distributed energy sources (DESs) are transforming distribution networks. This necessitates a decentralized management strategy for unbalanced operation in multi-agent distribution systems (MADSs) due to the autonomous nature and potential for unbalanced injection of single-phase DESs. Accordingly, this paper proposes a novel approach for decentralized management of unbalanced operation in MADSs. The approach leverages a customized alternating direction method of multipliers to facilitate decentralized decision-making, while incorporating transactive energy signals aligned with the alternating direction method of multiplier framework to enable independent agent operation. In this scheme, independent agents would optimize their operating costs considering the announced transactive signals, which model the power prices and power loss in the grid. The decentralized structure enables agents to apply stochastic and condition value at risk methods to address the uncertainty and associated risk in scheduling resources. Furthermore, without violating the privacy concerns of agents, the developed transactive-based scheme facilitates minimizing the asymmetrical condition, caused by the unbalanced integration of DESs, in the power request at the connection point of MADSs and transmission networks. Finally, the proposed methodology is simulated on 37-bus and 123-bus test-systems to study its effectiveness in managing the MADSs with unbalanced integration of DESs.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf