ELM-Wet: Inclusion of a Wet-Landunit With Sub-Grid Representation of Eco-Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM)

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2025-02-04 DOI:10.1029/2024MS004396
Theresia Yazbeck, Gil Bohrer, Madeline E. Scyphers, Justine E. C. Missik, Oleksandr Shchehlov, Eric J. Ward, Sergio L. Merino, Robert Bordelon, Diana Taj, Jorge A. Villa, Kelly Wrighton, Qing Zhu, William J. Riley
{"title":"ELM-Wet: Inclusion of a Wet-Landunit With Sub-Grid Representation of Eco-Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM)","authors":"Theresia Yazbeck,&nbsp;Gil Bohrer,&nbsp;Madeline E. Scyphers,&nbsp;Justine E. C. Missik,&nbsp;Oleksandr Shchehlov,&nbsp;Eric J. Ward,&nbsp;Sergio L. Merino,&nbsp;Robert Bordelon,&nbsp;Diana Taj,&nbsp;Jorge A. Villa,&nbsp;Kelly Wrighton,&nbsp;Qing Zhu,&nbsp;William J. Riley","doi":"10.1029/2024MS004396","DOIUrl":null,"url":null,"abstract":"<p>Wetlands are the largest emitters of biogenic methane (CH<sub>4</sub>) and represent the highest source of uncertainty in global CH<sub>4</sub> budgets. Here, we aim to improve the realism of wetland representation in the U.S. Department of Energy's Exascale Earth System Model land surface model, ELM, thereby reducing uncertainty of CH<sub>4</sub> flux predictions. We develop an updated version, ELM-Wet, where we activate a separate landunit for wetlands that handles multiple wetland-specific eco-hydrological patch functional types. We introduce more realistic hydrological forcing through prescribing site-level constraints on surface water elevation, which allows resolving different sustained inundation depth for different patches, and if data exists, prescribing inundation depth. We modified the calculation of aerenchyma transport diffusivity based on observed conductance per leaf area for different vegetation types. We use Bayesian Optimization to parameterize CO<sub>2</sub> and CH<sub>4</sub> fluxes in the developed wet-landunit. Site-level simulations of a coastal non-tidal freshwater wetland in Louisiana were performed with the updated model. Eddy covariance observations of CO<sub>2</sub> and CH<sub>4</sub> fluxes from 2012 to 2013 were used to train the model and data from 2021 were used for validation. Patch-specific chamber flux observations and observations of CH<sub>4</sub> concentration profiles in the soil porewater from 2021 were used for evaluation of the model performance. Our results show that ELM-Wet reduces the model's CH<sub>4</sub> emission root mean squared error by up to 33% and is able to represent inter-daily CO<sub>2</sub> and CH<sub>4</sub> flux variability across the wetland's eco-hydrological patches, including during periods of extreme dry or wet conditions.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004396","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004396","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wetlands are the largest emitters of biogenic methane (CH4) and represent the highest source of uncertainty in global CH4 budgets. Here, we aim to improve the realism of wetland representation in the U.S. Department of Energy's Exascale Earth System Model land surface model, ELM, thereby reducing uncertainty of CH4 flux predictions. We develop an updated version, ELM-Wet, where we activate a separate landunit for wetlands that handles multiple wetland-specific eco-hydrological patch functional types. We introduce more realistic hydrological forcing through prescribing site-level constraints on surface water elevation, which allows resolving different sustained inundation depth for different patches, and if data exists, prescribing inundation depth. We modified the calculation of aerenchyma transport diffusivity based on observed conductance per leaf area for different vegetation types. We use Bayesian Optimization to parameterize CO2 and CH4 fluxes in the developed wet-landunit. Site-level simulations of a coastal non-tidal freshwater wetland in Louisiana were performed with the updated model. Eddy covariance observations of CO2 and CH4 fluxes from 2012 to 2013 were used to train the model and data from 2021 were used for validation. Patch-specific chamber flux observations and observations of CH4 concentration profiles in the soil porewater from 2021 were used for evaluation of the model performance. Our results show that ELM-Wet reduces the model's CH4 emission root mean squared error by up to 33% and is able to represent inter-daily CO2 and CH4 flux variability across the wetland's eco-hydrological patches, including during periods of extreme dry or wet conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
ELM-Wet: Inclusion of a Wet-Landunit With Sub-Grid Representation of Eco-Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM) LEMDA: A Lagrangian-Eulerian Multiscale Data Assimilation Framework Issue Information Development of a Data-Driven Lightning Scheme for Implementation in Global Climate Models Energetically Consistent Eddy-Diffusivity Mass-Flux Convective Schemes: 1. Theory and Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1