Vertically Aligned MoS2 Nanosheets with Increased Interlayer Spacing on Hollow Polypyrrole Nanotubes for Enhanced Lithium and Sodium Storage Performance
{"title":"Vertically Aligned MoS2 Nanosheets with Increased Interlayer Spacing on Hollow Polypyrrole Nanotubes for Enhanced Lithium and Sodium Storage Performance","authors":"Weihang Hu, Hui Liu, Wanmeng Dong, Hafiz Akif Munir, Xin Tian, Xiuyi Fan, Lingyan Pang","doi":"10.1002/ente.202401010","DOIUrl":null,"url":null,"abstract":"<p>MoS<sub>2</sub> is the most promising anode material for secondary battery with its unique 2D layered structure. However, the application of MoS<sub>2</sub> is restricted by the poor electrical conductivity and sluggish ion diffusion. Herein, hollow nanotubes constructed with highly conductive 1T phase MoS<sub>2</sub> nanosheets and polypyrrole (PPy) nanotubes are fabricated and used as anode materials for lithium-ion batteries and sodium-ion batteries. Remarkably, these hollow nanotubes show a high lithium-specific capacity of 755.5 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup> and excellent sodium-specific capacity of 503.3 mAh g<sup>−1</sup> after 200 cycles. The enhanced electrochemical performance can be attributed to the rational design of unique 1D and 2D composite structure. First, the highly conductive 1T phase MoS<sub>2</sub> 2D nanosheets and hollow 1D PPy nanotube can effectively promote the charge transfer kinetics. However, the increased interlayer spacing of 1T phase MoS<sub>2</sub> rapidly improves the insertion/extraction process of metal ions, and the vertical growth of MoS<sub>2</sub> nanosheets on the surface of the PPy nanotubes also exposes more energy storage sites. This work provides a new idea for the preparation of MoS<sub>2</sub>-based composite materials, and also proposes a reference for its application in the secondary battery.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
MoS2 is the most promising anode material for secondary battery with its unique 2D layered structure. However, the application of MoS2 is restricted by the poor electrical conductivity and sluggish ion diffusion. Herein, hollow nanotubes constructed with highly conductive 1T phase MoS2 nanosheets and polypyrrole (PPy) nanotubes are fabricated and used as anode materials for lithium-ion batteries and sodium-ion batteries. Remarkably, these hollow nanotubes show a high lithium-specific capacity of 755.5 mAh g−1 at 100 mA g−1 and excellent sodium-specific capacity of 503.3 mAh g−1 after 200 cycles. The enhanced electrochemical performance can be attributed to the rational design of unique 1D and 2D composite structure. First, the highly conductive 1T phase MoS2 2D nanosheets and hollow 1D PPy nanotube can effectively promote the charge transfer kinetics. However, the increased interlayer spacing of 1T phase MoS2 rapidly improves the insertion/extraction process of metal ions, and the vertical growth of MoS2 nanosheets on the surface of the PPy nanotubes also exposes more energy storage sites. This work provides a new idea for the preparation of MoS2-based composite materials, and also proposes a reference for its application in the secondary battery.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.