{"title":"Pseudo-MRI Engine for MRI-Free Electromagnetic Source Imaging","authors":"Amit Jaiswal, Jukka Nenonen, Lauri Parkkonen","doi":"10.1002/hbm.70148","DOIUrl":null,"url":null,"abstract":"<p>Structural head MRIs are a crucial ingredient in MEG/EEG source imaging; they are used to define a realistically shaped volume conductor model, constrain the source space, and visualize the source estimates. However, individual MRIs are not always available, or they may be of insufficient quality for segmentation, leading to the use of a generic template MRI, matched MRI, or the application of a spherical conductor model. Such approaches deviate the model geometry from the true head structure and limit the accuracy of the forward solution. Here, we implemented an easy-to-use tool, <i>pseudo-MRI engine</i>, which utilizes the head-shape digitization acquired during a MEG/EEG measurement for warping an MRI template to fit the subject's head. To this end, the algorithm first removes outlier digitization points, densifies the point cloud by interpolation if needed, and finally warps the template MRI and its segmented surfaces to the individual head shape using the thin-plate-spline method. To validate the approach, we compared the geometry of segmented head surfaces, cortical surfaces, and canonical brain regions in the real and pseudo-MRIs of 25 subjects. We also tested the MEG source reconstruction accuracy with pseudo-MRIs against that obtained with the real MRIs from individual subjects with simulated and real MEG data. We found that the pseudo-MRI enables comparable source localization accuracy to the one obtained with the subject's real MRI. The study indicates that pseudo-MRI can replace the need for individual MRI scans in MEG/EEG source imaging for applications that do not require subcentimeter spatial accuracy.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70148","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Structural head MRIs are a crucial ingredient in MEG/EEG source imaging; they are used to define a realistically shaped volume conductor model, constrain the source space, and visualize the source estimates. However, individual MRIs are not always available, or they may be of insufficient quality for segmentation, leading to the use of a generic template MRI, matched MRI, or the application of a spherical conductor model. Such approaches deviate the model geometry from the true head structure and limit the accuracy of the forward solution. Here, we implemented an easy-to-use tool, pseudo-MRI engine, which utilizes the head-shape digitization acquired during a MEG/EEG measurement for warping an MRI template to fit the subject's head. To this end, the algorithm first removes outlier digitization points, densifies the point cloud by interpolation if needed, and finally warps the template MRI and its segmented surfaces to the individual head shape using the thin-plate-spline method. To validate the approach, we compared the geometry of segmented head surfaces, cortical surfaces, and canonical brain regions in the real and pseudo-MRIs of 25 subjects. We also tested the MEG source reconstruction accuracy with pseudo-MRIs against that obtained with the real MRIs from individual subjects with simulated and real MEG data. We found that the pseudo-MRI enables comparable source localization accuracy to the one obtained with the subject's real MRI. The study indicates that pseudo-MRI can replace the need for individual MRI scans in MEG/EEG source imaging for applications that do not require subcentimeter spatial accuracy.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.