Sara Sanei, Alireza Shahab Lavasani, Nasim Khorshidian, Orang Eyvazzadeh
{"title":"The Characterization of Nanoliposomes of Oleaster (Elaeagnus angustifolia) Extract and Their Effect on the Oxidative Stability of Low-Fat Mayonnaise","authors":"Sara Sanei, Alireza Shahab Lavasani, Nasim Khorshidian, Orang Eyvazzadeh","doi":"10.1155/jfbc/4091024","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to the high fat content and the use of synthetic antioxidants in the mayonnaise formulation, in this study, nanoliposomes (NLPs) of oleaster (<i>Elaeagnus angustifolia</i> L.) extract were used, and the physical and structural properties of the mayonnaise were investigated. In the research’s second phase, the quince seed mucilage (QSM) and soybean protein isolate (SPI) at concentrations of 1% and 2% were used in mayonnaise as a fat substitute. The NLPs were added to the low-fat mayonnaise formulation at concentrations of 0.5%, 0.75%, 1%, 1.5%, and 2%. Two samples without additives and TBHQ (200 ppm) were produced as a control. The samples were kept at 4°C for 6 months. The highest encapsulation efficiency, zeta potential, polydispersity index (PDI), antioxidant activity, and the smallest particle size were observed in the NLP-500 NLP (<i>p</i> < 0.05). In differential scanning calorimetry and thermogravimetry thermograms, NLP-1000 showed the lowest thermal stability and weight loss. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed that NLPs are spherical and homogeneous. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the entrapment of extract in phospholipid layers and a slight change in the peaks. All control treatments showed the highest fat content and pH (<i>p</i> < 0.05). TBHQ and treatments containing 2% QSM + SPI and 2% NLP (Sample 10) and 1% QSM + SPI and 2% NLP (Sample 5) showed the lowest acid, peroxide, thiobarbituric acid, and totox values during storage (<i>p</i> < 0.05). Therefore, NLPs containing oleaster extract can prevent the oxidation in mayonnaise.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/4091024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/4091024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the high fat content and the use of synthetic antioxidants in the mayonnaise formulation, in this study, nanoliposomes (NLPs) of oleaster (Elaeagnus angustifolia L.) extract were used, and the physical and structural properties of the mayonnaise were investigated. In the research’s second phase, the quince seed mucilage (QSM) and soybean protein isolate (SPI) at concentrations of 1% and 2% were used in mayonnaise as a fat substitute. The NLPs were added to the low-fat mayonnaise formulation at concentrations of 0.5%, 0.75%, 1%, 1.5%, and 2%. Two samples without additives and TBHQ (200 ppm) were produced as a control. The samples were kept at 4°C for 6 months. The highest encapsulation efficiency, zeta potential, polydispersity index (PDI), antioxidant activity, and the smallest particle size were observed in the NLP-500 NLP (p < 0.05). In differential scanning calorimetry and thermogravimetry thermograms, NLP-1000 showed the lowest thermal stability and weight loss. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed that NLPs are spherical and homogeneous. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the entrapment of extract in phospholipid layers and a slight change in the peaks. All control treatments showed the highest fat content and pH (p < 0.05). TBHQ and treatments containing 2% QSM + SPI and 2% NLP (Sample 10) and 1% QSM + SPI and 2% NLP (Sample 5) showed the lowest acid, peroxide, thiobarbituric acid, and totox values during storage (p < 0.05). Therefore, NLPs containing oleaster extract can prevent the oxidation in mayonnaise.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality