Zemeng Mi, Hanguang Su, Qiuye Sun, Yuliang Cai, Zhongyang Ming
{"title":"Dynamic event-triggered-based adaptive frequency control of microgrids under cyber-attacks via adaptive dynamic programming","authors":"Zemeng Mi, Hanguang Su, Qiuye Sun, Yuliang Cai, Zhongyang Ming","doi":"10.1049/rpg2.13187","DOIUrl":null,"url":null,"abstract":"<p>The increasing penetration of renewable energy sources (RES) and the development of the cyber-physical microgrids (CPMs) make greater demands for frequency control of microgrids. The common approach for frequency control is controlling the micro-turbine to compensate for frequency deviations, with energy storage systems serving as an auxiliary approach. This article proposes an online adaptive frequency control method to control the governor and energy storage to realize the frequency recovery of microgrid, subject to the external unknown disturbances caused by wind turbine, power load and false data injection (FDI) attacks. First, the non-zero sum (NZS) games of the considered system are modeled in this work, where the unknown disturbances are also taken into account. For the sake of estimating the unknown disturbances, a disturbance observer (DOB) for the microgrid system is introduced. Then, on the basis of the estimated results of the applied DOB, the disturbance compensation input is derived to offset the interference of the unknown disturbance. Meanwhile, the adaptive dynamic programming (ADP) approach is employed to derive the adaptive optimal control input for the NZS games of microgrid system. Besides, the dynamic event-triggered (DET) control is introduced, reducing the occupation of computing resources. By utilizing the Lyapunov's method, the stability of the closed-loop system, the convergence of the estimation weight, the estimation disturbances and the system state are guaranteed. The effectiveness of the proposed method is ultimately verified by the simulation results.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13187","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing penetration of renewable energy sources (RES) and the development of the cyber-physical microgrids (CPMs) make greater demands for frequency control of microgrids. The common approach for frequency control is controlling the micro-turbine to compensate for frequency deviations, with energy storage systems serving as an auxiliary approach. This article proposes an online adaptive frequency control method to control the governor and energy storage to realize the frequency recovery of microgrid, subject to the external unknown disturbances caused by wind turbine, power load and false data injection (FDI) attacks. First, the non-zero sum (NZS) games of the considered system are modeled in this work, where the unknown disturbances are also taken into account. For the sake of estimating the unknown disturbances, a disturbance observer (DOB) for the microgrid system is introduced. Then, on the basis of the estimated results of the applied DOB, the disturbance compensation input is derived to offset the interference of the unknown disturbance. Meanwhile, the adaptive dynamic programming (ADP) approach is employed to derive the adaptive optimal control input for the NZS games of microgrid system. Besides, the dynamic event-triggered (DET) control is introduced, reducing the occupation of computing resources. By utilizing the Lyapunov's method, the stability of the closed-loop system, the convergence of the estimation weight, the estimation disturbances and the system state are guaranteed. The effectiveness of the proposed method is ultimately verified by the simulation results.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf