{"title":"Direct laser active brazing of 316Ti to alumina","authors":"Jian Feng, Marion Herrmann, Antonio Hurtado","doi":"10.1111/ijac.14980","DOIUrl":null,"url":null,"abstract":"<p>This work addresses the challenges in brazing thermohydraulic sealings involving dissimilar materials, specifically 316Ti stainless steel and alumina, which have significantly different coefficients of thermal expansion (CTEs) and elastic constants. Traditional brazing methods require complex interlayers or extensive metallization steps, leading to issues such as dimensional changes, braze voids, and inadequate corrosion resistance due to prolonged high-temperature exposure. A novel laser-based brazing technique utilizing a diode laser is introduced to create high-quality, localized joints while preserving the integrity of the parent materials. The study systematically optimizes laser process parameters using finite-element modeling and the Taguchi method to achieve the desired bead geometry and thermal stress distribution with minimal heat input. Comparative analysis between laser active brazing (LAB) and conventional furnace brazing was conducted through metallography, shear testing, and autoclave testing. Results indicate that LAB parameters significantly affect bead thickness and shear strength, with laser-brazed joints demonstrating superior quality and stability post-autoclave testing compared with furnace-brazed joints. The thermodynamic and kinetic aspects of the brazing process were also analyzed. In conclusion, the LAB method for brazing 316Ti to alumina proves to be a successful and efficient alternative, with joint properties meeting or exceeding those of traditional furnace brazing.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14980","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14980","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses the challenges in brazing thermohydraulic sealings involving dissimilar materials, specifically 316Ti stainless steel and alumina, which have significantly different coefficients of thermal expansion (CTEs) and elastic constants. Traditional brazing methods require complex interlayers or extensive metallization steps, leading to issues such as dimensional changes, braze voids, and inadequate corrosion resistance due to prolonged high-temperature exposure. A novel laser-based brazing technique utilizing a diode laser is introduced to create high-quality, localized joints while preserving the integrity of the parent materials. The study systematically optimizes laser process parameters using finite-element modeling and the Taguchi method to achieve the desired bead geometry and thermal stress distribution with minimal heat input. Comparative analysis between laser active brazing (LAB) and conventional furnace brazing was conducted through metallography, shear testing, and autoclave testing. Results indicate that LAB parameters significantly affect bead thickness and shear strength, with laser-brazed joints demonstrating superior quality and stability post-autoclave testing compared with furnace-brazed joints. The thermodynamic and kinetic aspects of the brazing process were also analyzed. In conclusion, the LAB method for brazing 316Ti to alumina proves to be a successful and efficient alternative, with joint properties meeting or exceeding those of traditional furnace brazing.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;