{"title":"Collaborative optimization method for scalable prosumers’ participation in frequency regulation ancillary services","authors":"Xi'an Pan, Xin Ai, Fei Gao, Junjie Hu, Yingnan Zhang","doi":"10.1049/gtd2.13358","DOIUrl":null,"url":null,"abstract":"<p>As the demand for frequency regulation resources in power systems increases, collaborative optimization of flexible resources with rapid frequency regulation response capabilities, particularly by enabling scalable prosumers in local areas to participate in the frequency regulation ancillary service market, can effectively enhance safety, stability, and frequency regulation ability of power system. Therefore, this paper first establishes a collaborative optimization framework for scalable prosumers in frequency regulation and describes the operation model of prosumers. Considering the uncertainties that can impact prosumers' power decisions during frequency regulation, a scenario-augmented dataset generation method based on a denoising diffusion probabilistic model is proposed to improve decision adaptability under extreme scenarios with insufficient regulation capabilities. Additionally, to enhance the scalability and applicability of the training method in scalable prosumer collaborative optimization scenarios, a multi-agent attention proximal policy optimization algorithm combined with a global attention mechanism is introduced. The effectiveness of the proposed method in improving decision timeliness, operation benefits, scalability, and policy adaptability during scalable prosumers’ participation in frequency regulation ancillary services is validated using the IEEE standard node test system under various scales and scenarios.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13358","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for frequency regulation resources in power systems increases, collaborative optimization of flexible resources with rapid frequency regulation response capabilities, particularly by enabling scalable prosumers in local areas to participate in the frequency regulation ancillary service market, can effectively enhance safety, stability, and frequency regulation ability of power system. Therefore, this paper first establishes a collaborative optimization framework for scalable prosumers in frequency regulation and describes the operation model of prosumers. Considering the uncertainties that can impact prosumers' power decisions during frequency regulation, a scenario-augmented dataset generation method based on a denoising diffusion probabilistic model is proposed to improve decision adaptability under extreme scenarios with insufficient regulation capabilities. Additionally, to enhance the scalability and applicability of the training method in scalable prosumer collaborative optimization scenarios, a multi-agent attention proximal policy optimization algorithm combined with a global attention mechanism is introduced. The effectiveness of the proposed method in improving decision timeliness, operation benefits, scalability, and policy adaptability during scalable prosumers’ participation in frequency regulation ancillary services is validated using the IEEE standard node test system under various scales and scenarios.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf